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//Random frequency:

rand int fINT; //kHz.

//Random mode bits:

randc MODE_t MODE; 0101 DUT
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§1: Testbench for Analog
• OOP Testbench Organization

• A Mixed-Signal Filter DUT

• Bandpass Filter Architecture

• Analog Modes in SystemVerilog

• Filter Verification Plan 

• A Packet per Transaction

• Interface Bus Description

• FAQs to be Answered

Note:
Text in angle brackets (« ») indicates noncritical code,
whose details are omitted to avoid cluttered slides.
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FIX

SCB

ENV_MOD

DRV MON

MIF

MonitorDriver

Scoreboard

AMPL_OUT

DIF

Fixture

FREQ_IN

OOP
Layers

?
gainact == gainexp

SEQ

Sequence

fINT

MODE

TX_PKT

0101 DUT

PPA

PPA

S
E
Q
2
D
R
V DRV2SCB MON2SCB

RX_PKT

OOP Testbench Organization

• High-level components in OOP testbench are objects.
• Packets contain transaction data (stimulus, response).

Higher Levels
Data types:
• bit, logic
• int, real
• custom, etc.

Class Objects
(Send/Receive
Data Packets)

Submodules
(with Ports)

Top-Level
Module

( Portless)

Lowest Level
Data types:
• xbit
• xreal
• wire, etc.



5

v1.10v1.15

Bandpass Filter
(Programmable)

Digital Control Logic
Op-Amp

Analog RC
Network

out

in

vbn

Switches

vdd

A Mixed-Signal Filter DUT

• Active RC bandpass filter, with eight passband modes.
• Designed in Virtuoso, with transistors from 45-nm PDK.

Programmable
Automotive

Bandpass Filter
( 10–120 kHz )

GLISTER
Toolbar

(Requires
XMODEL
Plug-In)



6

v1.10v1.15

R2=200 or 400 kΩ

Two-Stage
Op-Amp

Nfb

High-
Pass

Stage Low-
Pass

Stage
R1=200 kΩ

C1=20 or 40 pF

C2=6.65 or 10 pF

Bypass Switch

Bias

in

out

vdd
(1.2 V)

Nref
vbn

(0.7 V)

Bandpass Filter Architecture

• Four-bit control input selects 1 of 8 modes—or bypass. 
• These bits switch CMOS transmission gates on and off.
• Puts R, C elements in series or shunt, to vary passband.

ctl_byp

ctl_r2

ctl_c1

ctl_c2

Digital
Control
Word

Bypass/Power-Down:
• Input feeds output.
• Op-amp tristated.
• Supply is cut off.

Dashed Lines 
Indicate

Digitally-Controlled
Switch Circuitry

Analog
RC Network
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Filter Verification Plan 

• Each transaction applies randomized inputs to filter.
• Both a random frequency and a cyclic-random mode.
• Filter's gain is then checked versus a reference model.
• Testbench checks supplemented by analog assertions.

Applied Stimulus Quantity Monitored Response

Input Frequency  uniform

Passband Mode cyclic

Cross coverage yes

no

Power-On Reset no

Random?

f  = 10–120 kHz
Measure:  gainact == gainexp

\M0..\M7

Frequency   Mode 100% of 68 = 48 bins

Bypass/Pwr-Down Supply Idd Assert:  Idd ≤ 5 nA

Bias Vbn Assert:  Vbn = 700 ± 50 mV



8

v1.10v1.15

Analog Modes in SystemVerilog

• An enum type captures these modes—with encodings.
• Custom typedef is packaged; imported where needed.
• High-level OOP code can now refer to a mode by name.

//Enumerated filter modes:
typedef
enum bit [2:0] {
//Filtering modes:

\M0_40-060x2 = 3'b000,
\M1_40-040x2 = 3'b001,
•  •  •  •    •  •  • 
\M6_20-120x1 = 3'b110,
\M7_20-080x1 = 3'b111

} MODE_t;

0000 M0_40-060x2 40 60 2

0001 M1_40-040x2 40 40 2

0010 M2_20-060x2 20 60 2

0011 M3_20-040x2 20 40 2

0100 M4_40-120x1 40 120 1

0101 M5_40-080x1 40 80 1

0110 M6_20-120x1 20 120 1

0111 M7_20-080x1 20 80 1

1XXX Bypass ― ― ―

Digital Control Word:
{ctl_byp, ctl_r2, ctl_c1, ctl_c2}

Binary
Value

Enumeration
Literal

f
 LO

f
 HI | g |

Escaped Name
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A Packet per Transaction

• Tags ensure that we compare nth TX with nth RX packet.
• Driver applies the packet's fields to input pins of DUT.
• Monitor samples DUT output pins; reassembles packet.

Packet Field Data Type Used In Range, Units

TAG int TX, RX

fINT int TX, RX
10–120 kHz

fREAL real TX

MODE MODE_t TX, RX

PPA_IN real RX

PPA_OUT real RX

≥ 1

\M0..\M7

≥ 0.00 Volts
PPA

PPA

fINT

MODE
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class PACKET;
int TAG = 0; //Packet ID.

//Random passband mode (M0..M7):
rand MODE_t MODE;

//Random frequency (10--120 kHz):
rand int fINT;   //kHz.
real     fREAL;  // Hz.

//Constrain fINT to a range:
constraint fRANGE_con {

fINT inside { [10:120] };
}

•  •  •  •
endclass: PACKET

The Packet Object (1/2)

• A packet is one transaction, with stimulus and response.
• Same packet class reused for both TX_PKT and RX_PKT.

fINT

MODE

Random
Stimulus

Constraining
the Random
Frequencies

Reference:
Cummings, UVM Transactions (SNUG-14) §3.2

TX_PKT

(From DRV
to SCB)
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class PACKET;
•  •  •  •

//Measured peak-peak amplitudes:
real PPA_IN, PPA_OUT; //Volts.

//Called after .randomize():
function void post_randomize();

•  •  •  •
//Cast random fINT to a real:

fREAL = real'(fINT * 1e3);
endfunction: post_randomize

endclass: PACKET

The Packet Object (2/2)

• Constraints on frequency, mode shape random stimuli.
• Can only randomize an integer-valued frequency fINT.
• Post-randomize conversion:  e.g. 20 kHz to 20,000.0 Hz.

Random int
Cast to real

PPA

PPA

Peak-Peak
Input and

Output

RX_PKT

(From MON
to SCB)
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FIX
MIF

AMPL_OUT

DIF

FREQ_IN 0101 DUT

Interfacing with the DUT

• Sequence object sends a transaction packet to driver.
• Driver sends fields of TX_PKT over interface bus, DIF.

• DIF is a virtual interface, able to connect to an object.
• Monitor gets fields over MIF; reassembles into RX_PKT.

Fixture
Submodule

Output
Sinusoid

Applied
Sinusoid

Applied
Mode

Fixture
Boundary

fINT

MODE

TX_PKT

PPA

PPA

RX_PKT
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interface BAND_IF(«clock…»);
import GOLD_PKG::*;

//Packet tag:
int TAG;

//Enumerated mode:
MODE_t  MODE;

//Random frequency:
int fINT; real fREAL;
•  •  •  •

//Peak-peak amplitudes:
real PPA_IN, PPA_OUT;

endinterface: BAND_IF

Interface Bus Description

• An interface:  a named bundle of signals of any type.
• Includes 1-ms PKT_CLK from the environment module.
• Bus instance DIF carries packets into fixture, and DUT.

PKT_CLK:

2.52 cm
1 msPacket Clock

//Instantiated in ENV_MOD: 
BAND_IF DIF(PKT_CLK, RST);
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FAQs to be Answered

A. How is the SystemVerilog real frequency fREAL
converted to a sinusoidal input to an analog filter?  

B. How can we measure the peak-to-peak amplitude
of the filter's sinusoidal input and output—especially
over a time span after transients have died out?

C. What enables a logic simulator like VCS or Xcelium
to accurately simulate the filter's analog behavior?

fREAL = 20e3

FREQ_IN 0101

20 kHz???
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§2: Fixture Subcircuits
• A Frequency Subcircuit

• Exercise #1

• A Mode Subcircuit

• Cyclic Random Modes

• Measure Time-Varying PPA

• A PPA Subcircuit

• Preview: Actual Gain

• Fixture Summary
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A Frequency Subcircuit

• Real input frequency value is converted to xreal type.
• Chain of several primitives generates a sine stimulus. 
• Type xreal enables event-driven simulation of analog.

FREQ_IN.fREAL

 Integrate constant (mod 1)
to generate a sawtooth.

 Scale by 2π
( ft→ ωt).

 Feed the scaled
sawtooth into a
sin(ωt) function.

PPA_IN, PPA_OUT

Measured Here 

fXREAL

fXREAL∙t 2π∙fXREAL∙t sin(2π∙fXREAL∙t)

Fixture
Internals
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Exercise #1: Quadrature Signals 

• Connect the primitives to generate quadrature signals.
• Outputs are a sine and cosine, of the same frequency. 
• Hint:  sin_func has a mode setting of "sin" or "cos".

I

Q

In-Phase
(cosine)

Quadrature
(sine)

fXREAL

Connect
the Blocks!

?

?

?
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Answer #1: Quadrature Signals 

• Can place elements from XMODEL library in Virtuoso.
• Or instantiate the elements into SystemVerilog code.

fXREAL

I

Q

In-Phase
(cosine)

Quadrature
(sine)

//Instantiate cos(ωt):
sin_func #(.mode("cos"))
F0 (.in(SAW), .out(I));

//Instantiate sin(ωt):
sin_func #(.mode("sin"))
F1 (.in(SAW), .out(Q));

ωt
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A Mode Subcircuit

• Let's defer any bypass/power-down testing until later.
• Set MODE[3] bit low for now, to disable bypass mode.
• Apply the randomized MODE[2:0] to the filter's inputs.

 Bring in MODE
from DIF bus.

 Set MSB low,
for no bypass.

 Feed random
MODE[2:0] bits
to filter's inputs.
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Cyclic Random Modes (1/4)

• Ideally, we'd like randomized MODE values to be cyclic.
• In a cycle of eight values, no repetitions would occur.
• A randc qualifier automatically yields cyclic behavior.

Launch SEQ.BODY...
#1. M4_40-120x1 at  21 kHz
#2. M0_40-060x2 at 120 kHz
#3. M7_20-080x1 at  19 kHz
#4. M6_20-120x1 at 117 kHz
#5. M3_20-040x2 at 103 kHz
#6. M1_40-040x2 at  91 kHz
#7. M2_20-060x2 at  32 kHz
#8. M5_40-080x1 at  21 kHz
#9. M3_20-040x2 at  60 kHz
.  .  .  .  .

No Modes
Repeated
in a Cycle

New
Cycle
Starts

class PACKET;
int TAG = 0;

//Random cyclic:
randc MODE_t MODE;
•  •  •  •

endclass: PACKET

Declare a Cyclic
Random Variable
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Cyclic Random Modes (2/4)

• But randc is limited:  lacks scalability and persistence.
• Simulators may restrict bit width of a randc variable.
• Cyclic behavior won't persist from one packet to next.

PKT_CLK:

History Lost
with Every

New Packet

ERROR [RCNAOLV]:
Random Cyclic Not Allowed on Long Vectors
Variable MODE is 48 bits wide, and can't be
declared as randc. Maximum supported bit
width in this tool is:  32.

fINT

MODE

fINT

MODE

fINT

MODE

fINT

MODE

#1 #2 #3 #4 • • •

Scaling MODE to 48 Bits
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Cyclic Random Modes (3/4)

• Workaround:  save the history with a queue of MODE_t. 
• Static queue keeps track of MODE values used thus far.
• Next mode chosen is constrained to values yet unused.

class PACKET;
•  •  •  •

//Random mode (M0..M7):
rand MODE_t MODE;

//Queue, storing used values:
static MODE_t USED[$] = '{};

//Constrain MODE to unused:
constraint XCLUDE_con {
!(MODE inside { USED });

}
•  •  •  •

//Post-process the queue:
function … post_randomize();
•  •  •  •

//Append till almost full:
if (USED.size < 7)  
USED.push_back(MODE);

else
//Last mode not pushed:
USED.delete(); //Empty.

•  •  •  •
endfunction: post_randomize

endclass: PACKET

Empty Initial Queue
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Cyclic Random Modes (4/4)

• Simulation transcript shows queue grow and shrink.
• At depth 7, only mode left is 0. Empty queue, restart

$time  MODE .size  Queue USED[$]
------ ---- ---- ------------------------------------
1 ms:  2 1    '{'h2}
2 ms:  3 2    '{'h2, 'h3}
3 ms:  6 3    '{'h2, 'h3, 'h6}
4 ms:  4 4    '{'h2, 'h3, 'h6, 'h4}
5 ms:  7 5    '{'h2, 'h3, 'h6, 'h4, 'h7}
6 ms:  5 6    '{'h2, 'h3, 'h6, 'h4, 'h7, 'h5}
7 ms:  1 7 '{'h2, 'h3, 'h6, 'h4, 'h7, 'h5, 'h1}
8 ms:  0 0    '{}
9 ms:  5 1    '{'h5}
10 ms:  3 2    '{'h5, 'h3}

.  .  .  .  .

Dave Rich (Siemens/Mentor), post 5015,

Solution:  randc Restrictions, 9 Jan 2013,

verificationacademy.com/forums/

systemverilog/randc-problem
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Measure Time-Varying PPA

• Place in Virtuoso, or instantiate in SystemVerilog code.
• Data sheet describes pin names, with their data types.
• Measurement primitives have output types like real.

On-Line Data Sheet
(At Support Website)

//Measure peak-to-peak sine input:
meas_pp M_PRE(
.in(SINE),.out(AMPL_OUT.PPA_IN),
.from(TICK_x), .to(TOCK_x)

);

Real-Valued Output
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Delimiting a Time Span

• Analog measurements often taken over time intervals.
• Interval delimited here by trigger signals of type xbit.
• Derived from PKT_CLK by a typical verification code block.
• Other primitives directly offer suitable xbit trigger output.

initial
begin:MEASURE
«wait till after reset»
forever
begin:TICKING
@(negedge «PKT_CLK»);
TICK = ~TICK;

//Stop meas_pp after DWELL:
#(DWELL) TOCK = ~TOCK;

end:  TICKING
end:  MEASURE

Converter
Primitives

Either Edge
Is Active!

Time Span
(After Settling
of Transients)
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A PPA Subcircuit

• Use meas_pp to measure amplitude over a time span.
• Triggering inputs .from, .to driven by TICK_x, TOCK_x.
• Time span between their triggering edges is 100 μs.

FREQ_IN.PKT_CLK

Derived timing signals,
TICK and TOCK, start and
stop each measurement. Convert

bit → xbit.

 Send real PPA values
over MIF, to monitor.FREQ_IN AMPL_OUT

PPA_OUTPPA_IN
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Preview: Actual Gain

• Monitor packetizes this data; sends on to scoreboard. 
• Scoreboard's task is to compare actual, expected gain.
• Actual gain is ratio of measured output/input amplitudes.

task SCORE_PACKET();
begin:SCORE_LOOP
real gACTUAL, PPA_IN, PPA_OUT;

/* Ratio of peak-peak values
* [varies from ~ 0.3 to 1.5]:
*/
PPA_OUT = RX_PKT.PPA_OUT;
PPA_IN  = RX_PKT.PPA_IN;
gACTUAL = PPA_OUT/PPA_IN;
•  •  •  •

PPA_IN PPA_OUT
PPA

PPAScoreboard Code
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Summary: Fixture Module

A. Submodule FIXTURE instantiates the analog DUT,
with various XMODEL instrumentation subcircuits.

B. Encapsulate all signals of type xreal or xbit inside
the fixture. Use primitives such as xreal_to_real
to convert them to and from types real and bit.

C. Fixture can include any SystemVerilog code (e.g.,
initial block) to control timing, or process data.

D. Structure types xreal, xbit enable analog and
digital simulation on event-driven logic simulator
—once an XMODEL plug-in has been installed.
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§3: SEQ Component
• Sequence Architecture

• Basic Test Sequence

• Sequence BODY() Task

• A Simulated Sequence

• Exercise #2

• Sequence Summary
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Sequence Architecture

• In Part 1, random stimuli came from the driver object.
• We now move the untimed stimuli to sequence object.
• Enhances reuse, and conforms more to UVM standard.

SCB

DRV

Driver

Scoreboard

DIF

SEQ

Sequence

fINT

MODE

TX_PKT

S
E
Q
2
D
R
V DRV2SCB

ENV_MOD
Sequence

Object
(Untimed Tests)

Driver Object
(DUT-Specific

Timing, Signals)
UVM Terminology:
A sequence is a task that sends a
series of transactions to a driver.
Distinct from a UVM sequencer.

Reference:
Edelman, et al. (Siemens/Mentor), 

Sequence, Sequence on the Wall

Series of
Packets
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Basic Test Sequence

• A baseline plan:  apply stimuli to the powered-up DUT.
• Later we extend the sequence to  test bypass/recovery.
• Sequence object will randomize frequency and mode.
• No timing details, just a series of random transactions.

Applied Stimulus Quantity Monitored Response

Input Frequency  uniform

Passband Mode cyclic

Cross coverage yes

no

Power-On Reset no

Random?

f  = 10–120 kHz
Measure:  gainact == gainexp

\M0..\M7

Frequency   Mode 100% of 68 = 48 bins

Bypass/Pwr-Down Supply Idd Assert:  Idd ≤ 5 nA

Bias Vbn Assert:  Vbn = 700 ± 50 mV
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Sequence BODY() Task

• Loop puts TRIALS transactions into mailbox SEQ2DRV.
• Each transaction is identified by its incremented TAG.
• Method .randomize() will only be called from this task.

class SEQUENCE
#(int TRIALS = 16);

//Stimulus to DRV:
PACKET TX_PKT;

//Queue to DRV:
mailbox SEQ2DRV;
•  •  •  •  •
task BODY(); //UVM-like.
for(«Loop for TRIALS»)
begin:SEQ_LOOP

TX_PKT = new();
TX_PKT.TAG = I;
TX_PKT.randomize();
SEQ2DRV.put(TX_PKT);
$write(
"%t ", $realtime,
«key packet data»,

"\n");
end:  SEQ_LOOP

endtask: BODY

endclass: SEQUENCE
Class-Wide Parameter

Debug
Aid

fINT

MODE

New
TX_PKT
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A Simulated Sequence

• Series of packets transmitted in zero time at 1.50 ms.
• Left up to driver, exactly when to apply the stimulus.
• Task writes out real time, tag, mode, and frequency.
• As expected, modes don't repeat—but frequency can.

1.500 ms: Launch SEQ.BODY...
1.500 ms: # 1. M4_40-120x1 at  21 kHz 
1.500 ms: # 2. M0_40-060x2 at 120 kHz 
1.500 ms: # 3. M7_20-080x1 at  19 kHz 
1.500 ms: # 4. M6_20-120x1 at 117 kHz 
1.500 ms: # 5. M3_20-040x2 at 103 kHz 
1.500 ms: # 6. M1_40-040x2 at  91 kHz 
1.500 ms: # 7. M2_20-060x2 at  32 kHz 
1.500 ms: # 8. M5_40-080x1 at  21 kHz 
.  .  .  .  .

Transcript
for Eight

Iterations

Zero Time

Same
fINT,

Distinct
MODE
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Exercise #2: Faulty Mailbox

• This sequence BODY() task has hard-to-find logical bug.
• Recall:  What is put in a mailbox is not an actual object.
• It is only the pointer to the object, like packet TX_PKT.

Buggy
Task

DRV

Driver

SEQ

Sequence

fINT

MODE

TX_PKTS
E
Q
2
D
R
V

TX_PKT = new();  
for(«Loop for TRIALS»)
begin:SEQ_LOOP
TX_PKT.TAG = I;
TX_PKT.randomize();
SEQ2DRV.put(TX_PKT);
$write(«packet data»);

end:  SEQ_LOOP

Reference:

SystemVerilog for Verification (Springer: 2012),
Chris Spear & Greg Tumbush, Sample 7.32.
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Answer #2: Robust Mailbox 

• Reusing same packet will queue up same pointer 16x.
• Driver will apply only the last set of random stimuli!
• Solution:  Move the new constructor inside the loop.

Debugged BODY Task

TX_PKT = new(); 
for(«Loop for TRIALS»)
begin:SEQ_LOOP
TX_PKT = new();
TX_PKT.TAG = I;
TX_PKT.randomize();
SEQ2DRV.put(TX_PKT);
$write(«packet data»);

end:  SEQ_LOOP

fINT

MODE

fINT

MODE

fINT

MODE

fINT

MODE

#1

#2

#3

#4DRV

Driver

SEQ

Sequence

S
E
Q
2
D
R
V

· · · ·
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Summary: Sequence Object

A. Can add one or more SEQUENCE components to an
analog OOP testbench, to conform more to UVM.

B. Optionally, parameterize the SEQUENCE class to
control number of TRIALS, or other testing details. 

C. Sequence BODY() task creates the random stimuli,
in untimed format, to be applied to DUT by a driver.

D. An OOP testbench is quite adequate for stand-alone
analog IP. Migrate to UVM for large, complex SOCs.
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§4: Driver and Monitor
• Driver Architecture

• Virtual Interface Explained

• Driver APPLY_SINE() Task

• Monitor SAMPLE_PPA() Task  
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SCB

DRV

Driver

Scoreboard

DIF

SEQ

Sequence

fINT

MODE

TX_PKT

S
E
Q
2
D
R
V DRV2SCB

ENV_MOD

FREQ_IN

Driver Architecture

• In Part 1, the driver object created the random stimuli.
• Now, it merely receives packets from sequence object.
• Extracts fields from packet, then applies them to DUT.

Sequence
Object

(Untimed Tests)

Driver Object
(DUT-Specific
Timing, Pins)

Virtual Interface:
Bridges gap, abstract objects to
hardware fixture. A driver class
can have a virtual abstraction of
the interface bus instance DIF.

Instances:
• SEQ, DRV
• MON, SCB
• DIF, MIF
• Mailboxes
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class DRIVER #(int TRIALS = 16);
. . . .

//Interface to fixture port:
virtual BAND_IF  vDIF; //Null.

//Call from ENV_MOD task BUILD:
function new(
mailbox SEQ2DRV_arg, . . .
virtual BAND_IF  DIF_arg

); . . . .
vDIF = DIF_arg; //Virtual.

endfunction: new
. . . .

endclass: DRIVER

Virtual Interface Explained

• A class cannot instantiate a hardware interface bus. 
• Instead it declares a virtual abstraction vDIF of bus BAND_IF.
• When DRV is built, actual DIF is passed to virtual vDIF.

to FIXTURE

//From task ENV_MOD.BUILD: 
DRV = new(SEQ2DRV,... DIF);

Actual

DRV

DIF
(Actual)

DIF (Virtual)vDIF
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Driver APPLY_SINE() Task

• Driver task can now refer to virtual vDIF, and its signals.
• Applies sequence packet fields to appropriate signals. 
• Task is aware of DUT-specific timing and signal names.

//Call from ENV_MOD test suite:
task APPLY_SINE();
for(«Loop for TRIALS»)
begin:DRIVE_LOOP
TX_PKT = new();
SEQ2DRV.get(TX_PKT);

//Apply stimuli to DIF:
@(posedge vDIF.PKT_CLK);
vDIF.TAG = TX_PKT.TAG;
vDIF.MODE = TX_PKT.MODE;
vDIF.fREAL = TX_PKT.fREAL;

//Send packet to SCB:
DRV2SCB.put(TX_PKT);
$write(«packet data»);

end:  DRIVE_LOOP
endtask: APPLY_SINE

Virtual Interface

PKT_CLK:

Stimuli Applied
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DWELL = 100μs

Monitor SAMPLE_PPA() Task

• Monitor organized like the driver, with virtual vMIF bus.
• Samples vMIF signals, reassembling them into packets.
• Task is aware of hardware timing; allows settling time.

task SAMPLE_PPA();
@(posedge MIF.PKT_CLK);
for(«Loop for TRIALS»)
begin:SAMPLE_LOOP
RX_PKT = new();

//Sample just after edges:
@(vMIF.TOCK) #(tSAMPLE); //μs.
. . . . . .
RX_PKT.PPA_IN  = vMIF.PPA_IN;
RX_PKT.PPA_OUT = vMIF.PPA_OUT;

//Collect coverage metrics:
CVG.sample; 

//Send packet to SCB:
MON2SCB.put(RX_PKT);
$write(«packet data»);

end:  SAMPLE_LOOP
endtask:  SAMPLE_PPA

MIF.TOCK:

Responses Sampled

PKT_CLK:

1ms

0.38 cm
Time Span
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§5: The Scoreboard
• Scoreboard Architecture

• Table Selection Code

• Sample Look-Up Table

• SPICE-Generated Tables 

• Array Look-Up Function

• Scoreboard Transcript
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Scoreboard Architecture

• Scoreboard must compare actual gain versus expected.
• Expected response for any mode is in a look-up table.
• Table is first selected by calling SEL_TABLE(RX_MODE).

Look-Up Tables
(For Modes 0..7)

//Call returns one table:
GOLD_REF = SEL_TABLE(RX_MODE);

SCB

DRV MON

fINT

TAG

PPA

TAG

DRV2SCB MON2SCB

task APPLY_SINE(…);
  . . . .
  TX_PKT = new();
  . . . .
  DRV2SCB.put(TX_PKT);
  . . . .

task SAMPLE_PPA(…);
  . . . .
  RX_PKT = new();
  . . . .
  MON2SCB.put(RX_PKT);
  . . .  

RX_PKTTX_PKT

fINT
GAIN

GOLD_REF
Reference

Model

10:  0.047
11:  0.052
12:  0.056

•   •   •
120:  0.082

10:  0.047
11:  0.051
12:  0.055

•   •   •
120:  0.058

OOP
Layers
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Table Selection Code

• From monitor's RX_PKT, the current mode is extracted. 
• A case statement returns look-up table for that mode. 
• Now, AA_t variable GOLD_REF holds the correct table.

Look-Up Table 0

//Look-up table type:
typedef
//Volts       kHz:
real  AA_t [int];

//Unpacked array of tables:
AA_t GOLD_REFS[8] = '{
0: GOLD_REF_0,
•  •  •  • 

7: GOLD_REF_7
};

function AA_t SEL_TABLE(MODE);
case (MODE) inside
\M0_40-060x2 :

return(GOLD_REFS[0]);
\M1_40-040x2 :
return(GOLD_REFS[1]);
•  •  •  •  •  •  •  

\M7_20-080x1 :
return(GOLD_REFS[7]);

endcase
endfunction: SEL_TABLE

10:  0.047
11:  0.051
12:  0.055

•   •   •
120:  0.058

10:  0.047
11:  0.052
12:  0.056

•   •   •
120:  0.082Array of Tables
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Sample Look-Up Table

• An associative array is convenient for a look-up table. 
• Allows even noncontiguous frequency-response data. 
• For 12 kHz input, GOLD_REF_0 expects ~56 mV output.

12 kHz
/* Associative array:
* Format: '{fINT: Vout, ...}
*/
real GOLD_REF_0[int] = '{
int'( 10.00000): 0.047_9123,
int'( 11.00000): 0.052_2140,
int'( 12.00000): 0.056_3879,
•  •  •  •  •   •  •  

int'(119.00000): 0.083_2204,
int'(120.00000): 0.082_7318,

default: 0.000_0000
};

0000 DUT

56 mVInteger
Index

(kHz)

Mode 0

Real
Output

(Volts)

Filter AC
Response
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SPICE-Generated Tables

• Ran HSPICE linear AC analysis for frequency response.
• One .lis file is generated for each mode; a total of 8.
• Raw data converted by script to a SystemVerilog array.

//Associative array:
//Format: '{fINT: Vout, ...}
real GOLD_REF_7[int] = '{
int'( 10.00): 0.045_0836,
int'( 11.00): 0.048_4755,
int'( 12.00): 0.051_6305,
•  •  •  •    •  •  •  •

int'(119.00): 0.054_2188,
int'(120.00): 0.053_9132,

default: 0.000_0000
};

.TITLE Bandpass Filter
****** ac analysis ***
freq voltage m
10.00k   45.0836m
11.00k   48.4755m
12.00k   51.6305m
•  •  •    •  •  • 

117.00k   54.8377m
118.00k   54.5270m
119.00k   54.2188m
120.00k   53.9132m 

awk
Script
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Array Look-Up Function

• With selected table in GOLD_REF, we visit every index.
• Scan for the least delta, remembering the best index.
• Return GOLD_REF[fBEST] as the expected amplitude.

Scan for least delta:
fDELTA = |fINT ─ f|

function real GOLD_VOUT(int fINT);
int fDELTA, fLAST, fBEST; . . .

//Initialize to first difference:
fLAST = ABS(fINT - fMIN);
foreach (GOLD_REF[f])
begin:SCAN
fDELTA = ABS(fINT - f);
if (fDELTA <= fLAST) fBEST = f;
fLAST = fDELTA;

end:  SCAN
return (GOLD_REF[fBEST]);

endfunction: GOLD_VOUT

f
56 mV

10:  0.047
11:  0.052
12:  0.056

•   •   •
120:  0.082

Look-Up
Table 0

Loop
Index

Amplitude
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Scoreboard Transcript

• Then expected gain = table look-up  SPICE amplitude.
• Works even for a noncontiguous frequency response.
• Across packets, worst-case error only 1 or 2% of SPICE.

/* Compute expected filter gain from
* amplitude returned by GOLD_VOUT():
*/
GOLD_REF = SEL_TABLE(RX_MODE);
gEXPECT = GOLD_VOUT(fINT)/0.100;
ERR_ABS  = gACTUAL − gEXPECT;

<Score: TX(15)==RX(15)> M0_40-060x2  @84 kHz
gACTUAL: PPA_OUT/IN = 0.20859447/0.200 = 1.04297233
gEXPECT: SCB.GOLD_VOUT( 84 kHz)/0.100  = 1.02609800
|ERROR|: gACTUAL – gEXPECT             = 0.01687433

0000 DUT

84 kHz
In

102.6 mV
Expect

100 mV SPICE Amplitude

From
XMODEL

Transcript
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§6: Bypass/Power-Down
• Four Descriptive States

• Extended Test Sequence

• Driving the Control Bits

• Summary: Extended Test
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Four Descriptive States

• Extend basic test sequence—add bypass and recovery.
• First do TRIALS iterations in the normal filtering mode.
• Then bypass DUT for a few cycles, and power up again.
• Resume filtering a few more cycles to check recovery.

//Define four DUT control states:
typedef 
enum bit [1:0] {    

FILTER = 2'b00, //Normal operation.
BYPASS = 2'b11, //Bypass/power-down.
WAIT_1 = 2'b10, //One power-up cycle.
RESUME = 2'b01  //Resume operation.

} STATE_t;

State Names
Visible in

Wave View

Imported from GOLD_PKG where needed.
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Extended Test Sequence

• Arbitrarily set INACTV to 5 (4 BYPASS + WAIT_1) cycles.
• Followed by a RESUME cycle, which preserves last TAG.
• Wrap up with 3 FILTER cycles, which add to coverage.

INACTVTRIALS +4

One-cycle WAIT_1 state
allows for Vdd rise time.

Use TAG saved 
during bypass.

Powered Down
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Driving the Control Bits

//Drive CTRL from MODE and STATE:
always @(posedge FREQ_IN.PKT_CLK)
case (STATE)

BYPASS: begin
CTRL[3]   = 1'b1;
CTRL[2:0] = «default»; end

WAIT_1: begin
CTRL[3]   = 1'b0;
CTRL[2:0] = «default»; end

«RESUME case item»
FILTER: begin

CTRL[3]   = 1'b0;
CTRL[2:0] = MODE; end

endcase

Fixture
Code

• Organizing the code by state made the details clearer.
• The CTRL bits drive DUT inputs {ctl_byp,…,ctl_c2}.

Bypass
Mode

Powering
Up Again

Inactive
States
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Summary: Extended Test

A. Bypass and recovery modes were not randomized,
but coded as a directed test case, using convenient
parameters TRIALS and INACTV (default: 5 cycles).

B. Four descriptive states defined, to better organize
code as DUT was bypassed, then powered back up. 

C. During bypass and recovery, collection of coverage
metrics must be suspended using iff clause [§8].

D. Critical design properties can still be checked during
the bypass cycles, using analog assertions [§7].
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§7: Analog Assertions
• Viewing Analog Assertions

• An Assertion Subcircuit

• Analog Assertion Plan

• Asserting Voltage, Current

• Using Assertion Defaults
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Viewing Analog Assertions

• SystemVerilog assertion (SVA) syntax is rich, growing. 
• Assertions complement any self-checking testbench.
• Why not use analog assertions to verify key properties?

Bias Voltage:
650  ≤ VBN ≤ 750 mV

Pass ()
or

Fail ()

Leakage Current:
IDD ≤ 5.00 nA

Deliberately
Injected Error!
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An Assertion Subcircuit

• A few measurement primitives were added to fixture.
• No language extensions such as Verilog-AMS required.
• Thus XMODEL has no slow-down due to co-simulation.

iprobeActs as
Milliammeter
in Supply Line

meas_max
Allows for
Variations
Over Time

Convert xreal
to realType

Fixture
Code
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Analog Assertion Plan

• Highly localized; a failure leads right to hardware bug.
• Catches predictable issues, such as polarity mismatch.
• Document DUT-specific assumptions like invalid state.
• Access purely analog design features, like a rise-time.

CK_BIAS

CK_LEAKG STATE==BYPASS

Analog/Mixed-Signal Assertions for Filter Properties

Assertion
Label

Variable
Checked

Antecedent
Condition

Property
Expression

XMODEL

Primitives

Vbn (nMOS Bias) RST deasserted Vbn = 700   50 mV
xreal_
to_real

Idd (Leakage) Idd(max) ≤ 5 nA
iprobe,
meas_max

Voltage

Current

Optional Trigger Condition:
• Start checks in same cycle:  |─>
• Start checks in next cycle:    |=>

Info:  Scientific Analog website,
xmodel button. See FEATURE 2:
scianalog.com/xmodel
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Asserting a Bias Voltage 

• First define the property BIASING_PRO, then assert it.
• Checking is only triggered after RST falls to inactive.
• Thereafter, checking is at every posedge of PKT_CLK.

//Check nMOS bias after a reset:
property BIASING_pro;
@(posedge FREQ_IN.PKT_CLK)
$fell(FREQ_IN.RST) |─>

(VBN >= 0.650) && (VBN <= 0.750);
endproperty: BIASING_pro

CK_BIAS: assert property (BIASING_pro)
«Report pass; else report failure.»

LRM Clause 16.6:
Boolean Expressions
Subexpression can be of
any type, as long as the
overall expression still
evaluates true or false.

SVA Code in Fixture
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Asserting Leakage Current 

• Can defer checking to next cycle to allow settling time.
• Seamlessly integrates with a full range of SVA syntax.
• Define a chain of events using the sequence keyword.

//Check leakage current in bypass:
property LEAKAGE_pro;
@(posedge FREQ_IN.PKT_CLK)
$rose(STATE == BYPASS) |=>

IDD < 5e-9;  //Inject a failure.
endproperty: LEAKAGE_pro

CK_LEAKG: assert property (LEAKAGE_pro)
«Report pass; else report failure.»

Injected Failure:
A reported failure, or a
red arrow in Wave View,
pinpoints exact locale
of the underlying bug.

SVA Code
in Fixture

//Example of a sequence expression: 
(IDD < 5e-9) throughout (STATE==BYPASS)[*4];
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Using Assertion Defaults

• Assertions can share default clock edge, and a disable.
• More concise, when you're writing multiple properties.

//Default clocking for assertions:
clocking CB
@(posedge FREQ_IN.PKT_CLK);

endclocking: CB

default clocking CB;

//Disable checking during a reset:
default disable iff (FREQ_IN.RST);

//Check leakage current in bypass:
property LEAKAGE_pro;
@(posedge FREQ_IN.PKT_CLK)
$rose(STATE == BYPASS) |=>

. . . .
endproperty: LEAKAGE_pro

Empty
Clocking
Block CB

Default Clock
for Assertions
Within Scope

Prevents
Checking
During an

Asynch
Reset

Omit Clock
in Property

SVA Code
in Fixture
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§8: Functional Coverage
• A Basic Coverage Group

• Frequency Coverage Map

• Enhanced Coverage Group

• Functional Coverage Stats

• Cross-Coverage Map

• Tactic: In-Line Constraint

• Brute-Force Approach

• Summary: Coverage
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A Basic Coverage Group

• In Part 1, only the analog frequency was randomized.
• A coverpoint tells VCS to compile coverage statistics.

//Coverage of frequency only:
covergroup CVG;
//Applied input-frequency bins:
FREQ_cvg: coverpoint RX_PKT.fINT

{
bins B10  = {[ 10: 19]};
bins B20  = {[ 20: 39]};
bins B40  = {[ 40: 59]};
bins B60  = {[ 60: 79]};
bins B80  = {[ 80: 99]};
bins B100 = {[100:120]};

}
endgroup: CVG

Direct Access
to Monitor
Properties

Partition
Frequency
Range of

10–120 kHz
into 6 Bins

Each Bin Must
Be Populated
During a Run

Embedded
in Monitor

Class

//Collect metrics:
CVG.sample; 
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Frequency Coverage Map

• This simulation ran for 20 trials, easily achieving 100%.
• Every bin, shaded in green, has population of at least 1.
• Data was extracted from a VCS unified coverage report.

Metrics:
Total trials = 20
Filled Bins = 6
Total Bins   = 6
Coverage = 100%

Frequency Bin
(Histogram Bar)

5

4

2

3

5

1B10

B20

B40

B60

B80

B100

f n
unix> ${VCS_HOME}/bin/urg -dir simv.vdb

VCS
urg
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Enhanced Coverage Group (1/2)

• In Part 2, we also randomized the digital mode word.
• Let's add a cover point for MODE to the same group.

//Cross-coverage of mode, frequency:
covergroup CVG;
FREQ_cvg: coverpoint RX_PKT.fINT

iff (
RX_PKT.STATE == FILTER ||
RX_PKT.STATE == RESUME )

{
bins B10  = {[ 10: 19]};
bins B20  = {[ 20: 39]};
•  •  •  •    •  •  •  •

bins B80  = {[ 80: 99]};
bins B100 = {[100:120]};

} •  •  •  •

Name of
Cover Point
Used in urg

Don't Sample
in Bypass or
Wait States

One Group
Can Specify

Multiple
Cover Points
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Enhanced Coverage Group (2/2)

• Covering all 8 modes is easy. But what about f  MODE?
• Keyword cross tells VCS to compile a 2-D histogram.
• Now there are 6x8=48 histogram bars, or bins, to fill. 

•  •  •  •

//Applied input-mode values:
MODE_cvg: coverpoint RX_PKT.MODE

iff (
RX_PKT.STATE == FILTER ||
RX_PKT.STATE == RESUME

);
//Cross-coverage:  MODE x fINT
CROSS_cvg:

cross MODE_cvg, FREQ_cvg;

endgroup: CVG

Sample Only
in Normal
Operation

Direct Access
to Monitor
Properties

Cartesian
Cross-Product

(All Possible
Combinations)

List of
Cover Point

Names
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Functional Coverage Stats

• Individual coverage of frequency and of mode is 100%.
• But cross coverage is only 65%, after a run of 40 trials.
• Recall that default rand yields a uniform distribution.

urgReport
(HTML View)

Why is Cross
Coverage Low?

100%
Coverage

of Both
Random
Variables

unix> ${VCS_HOME}/bin/urg -dir simv.vdb

Name of
Cross Point
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Cross-Coverage Map

• A low probability to hit any one cell— e.g. (B20, M7).
• Elegant solution:  try various SystemVerilog tactics.
• Brute-force solution:  keep simulating for ~200 trials.

00 0 1 1 1 1 1

10 1 1 0 2 0 1

10 1 0 2 1 0 0

12 4 1 1 2 2 1

11 0 0 1 0 1 3

13 0 2 0 0 1 0

M0    M1    M2    M3    M4    M5    M6    M7

B10

B20

B40

B60

B80

B100

 Extracted
from VCS
urgReport

Metrics:
Trials   = 40 + 4
Covered    = 31
Total Bins = 48
Coverage = 65%

Frequency
Bins

Mode Bins

cells = 44 trials

Chance of
Filling Cell:
1/48, or 2%
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Tactic: In-Line Constraint (1/2)

• Can add extra constraints in line with .randomize call.
• Tactic attempts to fill up three specific bins still empty.
• A valid approach—but in this case causes fatal conflict.

Empty
Bins

In-Line
Constraint

Block
(Unnamed)

task BODY();
•  •  •  •
«Tail of loop, after RESUME»
//An in-line constraint:
TX_PKT.randomize()

with {
MODE == \M0_40-060x2 ;
fINT inside {[20:79]};

}; //Semicolon ends call.
•  •  •  •

endtask: BODY

At Point of
Randomize
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Tactic: In-Line Constraint (2/2)

• Solver considers all constraints at once; no prioritizing.
• Can conflict—especially if specified in multiple objects.
• Mode M0 was in USED queue when we tried to reuse it.
• Solver issued this run-time error, for the packet #178.

RUN-TIME ERROR:
Solver failed when solving this set of constraints:

MODE_t USED[1] = '{\M0_40-060x2 };

constraint XCLUDE_con {
!(MODE inside {USED});

}

constraint WITH_CONSTRAINT {  //Unnamed constraint.
MODE == \M0_40-060x2 ;

}

Packet
Object

Sequence
Object

Reference:  Dave Rich (Siemens/Mentor), 

SystemVerilog Constraints:  What You Forgot in School
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16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

Cross-Coverage:  MODE x fINT [48 bins]

TRIALS

Brute-Force Approach

STATISTICS
Total packets run:  180 tested; 180 matching; 0 mismatch.

Worst gain error:   0.01727394

*** XMODEL/VCS simulation ***
started at: 23:34:41

ended at  : 23:35:22

total time: 00:00.41

100% Cross
Coverage
After 176

Trials

Random
Seed:
3947

Simulation
Wall Time:

~ 41 sec
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Summary: Functional Coverage

A. Verification teams can ensure complete coverage
of key features of a digitally-controlled analog DUT.

B. The XMODEL verification flow enables seamless
integration of functional coverage constructs.

C. Compatible with all of SystemVerilog's coverage
syntax:  coverpoint, cross, sample, bins, iff, with....

D. Speed of XMODEL simulations makes brute-force
iteration— e.g. 103 analog DUT trials—practical.
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§9: Environment Module
• Environment Architecture

• Top-Level Test Suite

• Sample Transcript



73

v1.10v1.15

FIX

SCB

ENV_MOD

DRV MON

MIF

MonitorDriver

Scoreboard

AMPL_OUT

DIF

Fixture

FREQ_IN

OOP
Layers

?
gainact == gainexp

SEQ

Sequence

fINT

MODE

TX_PKT

0101 DUT

PPA

PPA

S
E
Q
2
D
R
V DRV2SCB MON2SCB

RX_PKT

Environment Architecture

• In UVM, top-level environment is a class, like uvm_env.

• For simplicity, we've used a top-level module ENV_MOD.

Class
Objects

Submodules
(with Ports)

Top-Level
Module

( Portless
Enclosure)

Instances:
• SEQ, DRV
• MON, SCB
• DIF, MIF
• Mailboxes
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Top-Level Test Suite

• Test suite first constructs all OOP components, at 0 ms.
• After reset, generates sequence by calling task BODY().
• Applies DUT inputs; concurrently samples its outputs.
• Finally, it scores the packets sent from driver, monitor.

initial
begin:SUITE
//Build phase:
BUILD();

//Run phase:
wait(!RST);
SEQ.BODY();
fork
DRV.APPLY_SINE();
MON.SAMPLE_PPA();

join

//Check phase:
SCB.SCORE_PACKET();
@(posedge PKT_CLK) $finish;

end:  SUITE
UVM-Like

Phases

XMODEL Manifest File (man.f):
--simtime 200ms

--sim-option -assert quiet --

--sim-option +ntb_random_seed=3947 --

--logfile RUN-3947.log
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Sample Transcript

186.605 ms: <Score: TX(179)==RX(179)> M6_20-120x1,  34 kHz
gACTUAL: PPA_OUT/IN = 0.16768778/0.200 =  0.83843891

gEXPECT: SCB.GOLD_VOUT(  34 kHz)/0.100 =  0.83368500

|ERROR|: gACTUAL - gEXPECT (absolute)  =  0.00475391

186.605 ms: <Score: TX(180)==RX(180)> M3_20-040x2,  64 kHz

gACTUAL: PPA_OUT/IN = 0.20078843/0.200 =  1.00394215

gEXPECT: SCB.GOLD_VOUT(  64 kHz)/0.100 =  0.99510200
|ERROR|: gACTUAL - gEXPECT (absolute)  =  0.00884015

186.605 ms: Finish SCORE_PACKET...

187.000 ms: STATISTICS
Total packets run:  180 tested; 180 matching; 0 mismatch.

Worst gain error:   0.01727394

Random
Seed:
3947

• Transcript shows scoring for last two of 180 packets.
• Just alter random seed for different sequence of data.
• Thus, you reuse same OOP code for dozens of tests.
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§10: Guidelines
• Guidelines 1–4 

• Guidelines 5–9 

• Guidelines 10–12 

Note:
For easier reference, the relevant slide numbers have been
indicated in boldface in square brackets—e.g., slide [50].
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Guidelines 1–4 

1. Develop a simplified DUT macro model to debug
testbench in early OOP/UVM/DUT development.

2. Encapsulate XMODEL elements in a fixture module,
including xreal signals; concurrent assertions [28].

3. For maximum code reuse, put stimulus generation
and randomization into an untimed sequence—

analogous to class uvm_sequence_item [32].

4. Fork the APPLY_SINE and MONITOR_PPA tasks, to
measure PPA_OUT while fREAL is still applied [74].
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Guidelines 5–9 

5. Use a static queue to get cyclic-random behavior,
when limitations on randc are encountered [22].

6. Specify random seed on the command line [74].

7. Embed cover groups within a monitor class. Must
still be instantiated to collect coverage data [62].

8. Avoid oversampling of coverage with iff clause
—for example, while DUT is powered down [64].

9. Use cross-coverage of two (or more) random
variables, to check on key corner cases [65].
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Guidelines 10–12 

10. Suppress excessive assertion reporting, using
simulator-specific options [74].

11. Use default disable clause for assertions, under
conditions like active asynchronous reset [60].

12. Enumerate DUT control variables or states,
using enum. Coverage bins are automatically
labeled with the enumerated names [50].

References:

C. Dančak, ResearchGate, SystemVerilog OOP Testbench…Analog Filter,  Part 1 & 2.

www.researchgate.net/publication/
346061868_SystemVerilog_OOP_Testbench_for_Analog_Filter_A_Tutorial_Part_1

350412143_SystemVerilog_OOP_Testbench_for_Analog_Filter_A_Tutorial_Part_2
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Final Summary
• This talk addressed how to write an OOP-style 

SystemVerilog testbench for a digitally-controlled 
analog DUT

• The testbench seamlessly integrates all language 
constructs of SystemVerilog — class components, 
interface bus, constrained randomizations, assertions, 
coverage, etc.

• XMODEL offers primitives for modeling analog 
circuits, generating stimuli, and checking results 
within SystemVerilog and provides 10~100x faster 
speed than RNV and SPICE-level accuracy
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Resource List
• Watch again the pre-recorded videos of this webinar:

https://youtu.be/9LfTYCLbj9M

• Read tutorials and try with the examples:
https://www.scianalog.com/webinar/20210625

• Learn more about XMODEL:
https://www.scianalog.com/xmodel

https://youtu.be/9LfTYCLbj9M
https://www.scianalog.com/webinar/20210625
https://www.scianalog.com/xmodel
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