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Today SoC’s are Mixed-Signal
•No SoC’s are purely digital or purely analog
•Many SoC’s are digital on outside and analog on inside
•Chip-level testbenches are usually in SystemVerilog (UVM)
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With No Clear A/D Boundaries
•Often, analog and digital parts form a feedback loop; 

making it difficult to verify one without the others
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Goal: Verify SoC’s in SystemVerilog
•To achieve this goal, we need capabilities to:
•Simulate analog models in SystemVerilog
•Auto-extract models from analog circuits

SystemVerilog Testbench (UVM)
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XMODEL: Enable Analog for SV/UVM
•A plug-in extension that enables fast and accurate 

analog/mixed-signal simulation in SystemVerilog
• Event-driven: 10~100x faster than Real-Number Verilog 
• Analog: supporting both functional and circuit-level models
• SystemVerilog: enabling analog verification in UVM
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Event-Driven Simulation of Analog
•How do we extend the Verilog’s event-driven algorithm 

to simulating analog circuits?
Digital

Analog

01 01

???
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Expressing Analog Events
•XMODEL expresses analog signals in functional forms 

instead of using a series of time-value pairs:

Accuracy relies on fine time step Events occur only when the 
coefficients are updated

SPICE XMODEL
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Propagating Analog Events
•With the signals transformed into Laplace s-domain:

•The response of a system can be computed in an event-
driven manner without time-step integration:
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XMODEL’s Event-Driven Simulation
•XMODEL triggers very few events during simulation  

and hence achieves very fast speed

Event Markers
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Block-Level vs. Circuit-Level Models
Block-Level Model
(Signal-flow Model)

Circuit-Level Model
(Conservative System Model)

• A network of blocks 
where signals flow in 
one direction only

• A network of circuits 
whose state is described 
by voltages & currents

• e.g. loading effects
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Need for Circuit-Level Models (CLMs)
•Circuit-level models are the most natural way to model 

switching, nonlinear, and loading effects in analog 
circuits
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CLM Support in XMODEL
• In XMODEL, one can describe analog circuits directly by 

listing the circuit’s elements and devices
•XMODEL can simulate these models in SystemVerilog

in event-driven fashion without invoking SPICE
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CLM Support (1): Circuit Clustering
•XMODEL partitions the circuit into clusters that can be 

solved separately
•Signals across the cluster boundaries are unidirectional

Cluster 1 Cluster 2 Cluster 3
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CLM Support (2): TF Extraction
•For each cluster, XMODEL extracts the transfer function 

(TF) between its inputs and outputs
•Then, the XMODEL’s event-driven algorithm can 

compute output events from the input events

Circuit Cluster

Differential
Algebraic
Equation

Transfer
Function

MNA PFE
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PWL Models for Nonlinear Elements
•XMODEL models nonlinear elements (e.g. diodes and 

transistors) using piecewise-linear (PWL) models
• In each operation region,

the circuit yields a linear TF
•Switch into a new TF

when the region changes
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Structural Model Generation
•The first way to auto-generate models from circuits
•Model each device in the circuit individually
•Build the circuit model by connecting the device models 

as in the original circuit
module ctle (

`input_xreal inp, inn,          // input signals
`output_xreal outp, outn // output signals

);

xreal sp, sn;
xreal vdd;

vsource #(.mode("dc"), .dc(Vdd))
V1(.pos(vdd), .neg(`ground), .in(`ground));

isource #(.mode("dc"), .dc(Ib/2))
I1(.pos(sp), .neg(`ground), .in(`ground));
I2(.pos(sn), .neg(`ground), .in(`ground));

nmosfet #(.Kp(Gm), .Vth(Vth))
M1(.d(outn), .g(inp), .s(sp), .b(`ground)),
M2(.d(outp), .g(inn), .s(sn), .b(`ground));

resistor    #(.R(Rload))
RL1(.pos(vdd), .neg(outp)),
RL2(.pos(vdd), .neg(outn));

capacitor   #(.C(Cload))
CL1(.pos(vdd), .neg(outp)),
CL2(.pos(vdd), .neg(outn));

resistor    #(.R(Rc))   RC1(.pos(sp), .neg(sn));
capacitor   #(.C(Cc))   CC1(.pos(sp), .neg(sn));

endmoduleSPICE ElementsXMODEL Primitives
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MODELZEN: Extract Bottom-Up Models
•MODELZEN can automatically generate bottom-up 

analog models from your circuit schematics or netlists
•Extracts structural, circuit-level models by default
•Model parameters are calibrated via SPICE simulations
•Extracted models also simulate in an event-driven way
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MODELZEN in Cadence Virtuoso
•With GLISTER and MODELZEN, you can auto-create 

analog models from circuit schematics with just a 
single mouse click!
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Two-Stage Op Amp Example
•MODELZEN generates correct-by-construction, 

structural models using circuit-level primitives
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Op Amp Simulation Results
•Models both nonlinear behavior when it’s in open loop

and linear behavior when in closed-loop feedback

in

out

in

out
gain=-10
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Pipelined ADC Example
•An 8-bit pipelined ADC designed in PTM 45nm with 

dual power supplies (vddD=1.2V and vddA=3.3V)
•Operates at 100MHz with full-scale range of 0.5Vpp
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CLM Extraction Approach (1)
•Assign MODELZEN pin properties so that digital I/O 

pins have xbit or bit types with proper conversion 
levels (1.2 or 3.3V)

Digital pins

pipelined_adc_ckt.MDAC:schematic
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CLM Extraction Approach (2)
•Specify a list of digital cells in tech_config.py file so 

that MODELZEN can extract simpler models for them
• 1.2V logic gates: std_inv, std_mux, std_fulladd, std_dff, …
• 3.3V logic gates: hv_inv, hv_nand2, hv_nor2, hv_xor, …
• 1.2V ↔3.3V level converters: conv_hi2low, conv_low2hi

# subckt-specific device mapping
cells_digital = [

wildcard("std_*"),
wildcard("hv_*"),
wildcard("conv_*"),

]
devicemap_digital = derive_devicemap(devo_devicemap, convto_digital)
update_subcktmap(cells_digital, devicemap_digital)
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CLM Extraction Approach (3)
•Specify a list of switch cells in tech_config.py file so 

that their transistors can be extracted as switches
• e.g. switches used for switched-capacitor circuits

•Adding this option also helps:

cells_switch = [
"diffOTA_CMFB",
"sh_amp",
"MDAC",

]
devicemap_switch = derive_devicemap(devo_devicemap, convto_switch)
update_subcktmap(cells_switch, devicemap_switch)

devo_options['reduce_dev'] += ["nmosfet->switch", "pmosfet->switch"]



25

CLM Extraction Approach (3): MDAC
•We want to model the transistors in MDAC as switches

pipelined_adc_ckt.MDAC:schematic
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Bottom-up Model Extraction
• Just clicking “Run MODELZEN” icon on the top-level 

schematic extracts models from the entire circuit
•The extracted model is imported to an xmodel view

Run MODELZEN
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Extracted SystemVerilog Models
•pipelined_adc_ckt.ADC_top:xmodel
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Simulated Results: tb_rampinput
•pipelined_adc_ckt.ADC_top:tb_rampinput
•Simulation runtime: ~19 min.

Momentary glitches;
Not code errors
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Simulated Results: tb_rampinput (2)
•Digital and residual outputs of the individual stages:

Vres1

Vres2

D1

D2

Vres3

Vres4

D3

D4
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Simulated Results: tb_sineinput
•pipelined_adc_ckt.ADC_top:tb_sineinput
•Simulation runtime: ~20 min.

Momentary glitches;
Not code errors
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Simulated Results: tb_sineinput (2)
•The residual outputs of the individual stages:

Vres1

Vres2

Vres3

Vres4
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Structural Model Generation
•Pros: enables a push-button flow generating correct-

by-construction, SPICE-accurate analog models 
without requiring analog expertise

•Cons: the resulting circuit-level models are low-
abstraction, transistor-based models that have 
limited simulation speeds

•Q: Can we generate functional models using the
MODELZEN’s push-button flow?
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Functional Model Generation
•Functional modeling focuses on the circuit’s functions 

instead of its structure (i.e. topology):
•Choose a template model based on the circuit’s functions
•Calibrate its model parameters via SPICE characterization
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User-Defined Model (UDM)
•The User-Defined Model (UDM) interface of MODELZEN

lets you generate higher-abstraction models with 
SPICE-calibrated parameters for any selected parts of 
the circuits

Use functional 
models!

value gain, bandwidth, …
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Functional Modeling with UDM
•For instance, you can auto-generate a functional 

model for an oscillator circuit of which frequency 
characteristics are calibrated by SPICE simulation
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Defining UDM Mapping on Circuits
•Select part of the circuits to be mapped to a UDM and 

right button click on “MODELZEN Properties”
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Defining UDM Mapping on Circuits (2)
•Edit MODELZEN Properties dialog window will appear 

where you can map each “pseudo-terminal”
to a UDM port and define UDM parameters 
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UDM Definition
•Each UDM is a Python class that defines:
•A list of terminals and option parameters
• Functional model template
•SPICE simulation steps to fit the model parameters
class pwm_v1 (devo_udm):

terms = {
'in'    : dict(direction="input", sigtype="xreal", width=1),
'out'   : dict(direction="output", sigtype="xbit", width=1),
'vpwr'  : dict(direction="input", sigtype="xreal", width=1,

paramtype='real', prompt='Value', default=1.2),
'vgnd'  : dict(direction="input", sigtype="xreal", width=1,

paramtype='real', prompt='Value', default=0.0),
'vbias' : dict(direction="input", sigtype="xreal", width=[0,None],

paramtype='real', prompt='Value', default=0.7),
'ibias' : dict(direction="input", sigtype="xreal", width=[0,None],

paramtype='real', prompt='Value', default=0.0),
}

params = {
'range_in'  : dict(type="real_array", prompt="Input Range (min, max)", default=[0.2,0.8]),

}
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Quest for Analog Model Templates
•Many circuits with analog inputs & outputs fall into:
•One-port model
•Multi-port impedance model
•Multi-port amplifier model

•Other circuits with digital inputs or outputs:
•Comparators and slicers
•Digital logic gates, flip-flops, and latches
•Delay lines and oscillators
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One-Port Model
•For circuits producing voltages or currents without 

inputs (e.g. reference generators)
•Thevenin/Norton-equivalent circuit models finite Rout

•V1 and R1 can be PWL functions to model nonlinearity
•R1 can be Z1(s) to model AC impedance 

PWL,1

PWL,1

OUT1

OUT1
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Flexible Port Widths
•Many of our UDM ports have variable widths, so that 

each UDM can be mapped to a variety of circuits

•For example, our refgen UDM modeling one-port 
circuits can have arbitrary number of vout’s and iout’s

UDM Port Description Parameter

vout Voltage output Iout bias

iout Current output Vout bias

mode Digital mode input
Voltage level 
: level1[, level0]
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Digital Mode Inputs
•Many analog circuits have digital mode inputs for 

various purposes: e.g. trimming, power-down, enable, …
•These inputs don’t change the model template, but 

change the model parameter values
• e.g. changing the output level or impedance

•Our UDMs support arbitrary number of ‘mode’ inputs
•Generated model contains a look-up table defining 

parameter values for each combination of digital modes
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Multi-Port Impedance Model
•For circuits having impedances between multiple ports
•Often, digital modes control their impedance values
• e.g. digitally-controlled resistors and capacitors, analog 

multiplexer/demultiplexers (switch networks)

Digitally-adjustable
Capacitor

Analog
Mux/Demux
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Multi-Port Amplifier Model
•For circuits amplifying/filtering from inputs to outputs
•Each input/output port network with finite and/or 

nonlinear Zin(s) or Zout(s)
•Port-to-port transfer functions model DC gain, AC TF, 

and/or nonlinearity between input & output ports
Input Port
Network

Output Port
Network

Port-to-Port
Transfer Functions
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Bias Generator: biasgen
•Generates digitally-trimmable bias voltages via:
• First stage generating a reference current (iref) from vref
•Second stage scaling the current with trim<2:0>
•Third stage converting the current into vbp, vbn & vbcm

pipelined_adc_ckt.biasgen:schematic
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UDM refgen for biasgen
•Models a circuit generating reference voltages or 

currents controlled by digital mode inputs

UDM:refgen
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Simulation Results: biasgen
•Testbench: pipelined_adc_ckt.biasgen:tb_run
•Measuring the bias voltage levels while varying trim
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Sample-and-Hold Stage: sh_amp
•A switched-capacitor sample-and-hold amplifier
•A common-mode feedback (CMFB) circuit maintains the 

output common-mode level at vcm

pipelined_adc_ckt.sh_amp:schematic
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Differential OTA: diffOTA
•Designed as “telescopic

OTA” with boosted 
cascodes
•Providing a large gain

with a single stage

pipelined_adc_ckt.diffOTA:schematic
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UDM amp_linear for diffOTA
•Models linear amplifier networks with voltage or 

current input/output’s
UDM:amp_linear

vbcm can be 
adjusted by CMFB; 
modeled as vin port
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CMFB Circuit: diffOTA_CMFB
•Applies an offset between vbcm_in and vbcm_out

which is equal to the difference between the outp/outn
common-mode level and vcm

pipelined_adc_ckt.diffOTA_CMFB:schematic
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Clock Generator: clkgen
• Inverter chains drive the clock loads and add delays 

defining the non-overlapping periods
• ckD has 1.2V swing; others have 3.3V

ck_in
ck_out

ckD

ckB_d

ckB

ckA

ckA_d

pipelined_adc_ckt.clkgen:schematic
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UDM delayline for clkgen
•Models a delay line with digital input/output’s which 

can be gated or delay-adjusted depending on the 
digital mode inputs

UDM:delayline

pipelined_adc_sol.clkgen:schematic



54

Simulation Results: sh_amp
•Now, generate a model for sh_amp
•And run pipelined_adc_ckt.sh_amp:tb_run
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1.5-bit Sub-ADC: subADC
•A flash-type ADC made of R-string reference generator, 

comparators, and encoder logic

pipelined_adc_ckt.subADC:schematic
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Comparator Stage: comp
•Made of a pre-amplifier stage amplifying the difference 

between Vin=inp-inn and Vref=refp-refn and a clocked 
comparator (latch) stage detecting its polarity

pipelined_adc_ckt.comp:schematic
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Pre-Amplifier Stage: comp_preamp
•A switched-capacitor circuit amplifying Vin-Vref

pipelined_adc_ckt.comp_preamp:schematic
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Latch Stage: comp_latch
•A strongArm comparator detecting the polarity of 

inp-inn at the falling edge of ckA

pipelined_adc_ckt.comp_latch:schematic
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UDM comp_dev for comp_latch
•A custom UDM that models a clocked comparator 

circuit with xreal-type analog inputs and xbit-type 
digital outputs 

UDM:comp_dev
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Output Encoder Logic: subADC_encA
•Converts the thermometer-coded inputs (dh, dl) to 

one-hot-coded outputs Q<2:0>, gated by ckB

pipelined_adc_ckt.subADC_encA:schematic

3.3V outputs
3.3V inputs
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UDM comblogic for subADC_encA
•Models arbitrary combinational logic paths

UDM:comblogic
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Output Encoder Logic: subADC_encD
•Converts the thermometer-coded inputs (dhb, dhl) to 

binary-coded outputs D<1:0>, registered at falling 
edge of ckB

pipelined_adc_ckt.subADC_encD:schematic

3.3V inputs
1.2V outputs
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UDM comblogic for subADC_encD
•Can also model level converters

by setting input/output levels
UDM:comblogic

UDM:comblogic



64

UDM dflipflop for std_dff
•Models D-flipflops with optional set/reset inputs
•Auto-detects clock, set/reset & output polarities, and 

sync/async types, …

UDM:dflipflop
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Simulation Results: subADC
•Testbench: pipelined_adc_ckt.subADC:tb_run
•Sub-ADC produces both binary-coded output D<1:0>

and one-hot-coded output Q<2:0>

00 01 10
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1.5-bit MDAC: MDAC
•Sub-DAC selects

vrefH, vcm, or
vrefL depending
on one-hot
coded Q<2:0>
•Q<2:0> is

qualified by ckB

pipelined_adc_ckt.MDAC:schematic
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Simulation Results: MDAC
•Testbench: pipelined_adc_ckt.MDAC:tb_run
•Confirms gain = 2 and offset = -VFS/2, 0, and +VFS/2

Q = 001

Q = 010

Q = 100
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1.5-bit Unit Stage: ADC_unitstage

pipelined_adc_ckt.ADC_unitstage:schematic
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Simulation Results: ADC_unitstage
•Testbench: pipelined_adc_ckt.ADC_unitstage:tb_run

D=01D=00 D=10
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Digital Combiner: combiner
•A cascade of shift-and-add stages

pipelined_adc_ckt.combiner:schematic
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UDM comblogic for std_fulladd
•Static CMOS logic computing:

UDM:comblogic

pipelined_adc_sol.std_fulladd:schematic
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Pipelined ADC: ADC_top
•Now we are ready to extract the top-level model of the 

pipelined ADC!

pipelined_adc_ckt.ADC_top:schematic:
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Simulated Results: tb_rampinput
•pipelined_adc_ckt.ADC_top:tb_rampinput
•Simulation runtime: 60 sec. (vs. 18.7 min. with CLM)

Due to uninitialized
internal states; 
not errors
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Simulated Results: tb_rampinput (2)
•Digital and residual outputs of the individual stages:

Vres1

Vres2

D1

D2

Vres3

Vres4

D3

D4



75

Simulated Results: tb_sineinput
•pipelined_adc_ckt.ADC_top:tb_sineinput
•Simulation runtime: 54 sec. (vs. 19.9 min. with CLM)
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Simulated Results: tb_sineinput (2)
•The residual outputs of the individual stages:

Vres1

Vres2

Vres3

Vres4
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Summary
•Demonstrated two ways of automatically extracting 

bottom-up models from analog circuits
•Structural modeling guarantees correct-by-construction 

models for all kinds of circuits
• Functional modeling yields higher-abstraction models 

that run much faster
•Best results can be achieved by combining the two

•Now with the SystemVerilog models for analog circuits, 
you can perform efficient verification for mixed-signal 
SoC’s all in SystemVerilog/UVM!


