
Automatic Generation of
SystemVerilog Models from
Analog/Mixed-Signal Circuits:
A Pipelined ADC Example

Prof. Jaeha Kim
Seoul National University & Scientific Analog, Inc.
September 2021

2

Today SoC’s are Mixed-Signal
•No SoC’s are purely digital or purely analog
•Many SoC’s are digital on outside and analog on inside
•Chip-level testbenches are usually in SystemVerilog (UVM)

CPU DRAM

1010111…
Analog

Digital

Analog

3

With No Clear A/D Boundaries
•Often, analog and digital parts form a feedback loop;

making it difficult to verify one without the others

EQ
Adapt.

Offset
Calibration

Timing
Adjustment

4

Goal: Verify SoC’s in SystemVerilog
•To achieve this goal, we need capabilities to:
•Simulate analog models in SystemVerilog
•Auto-extract models from analog circuits

SystemVerilog Testbench (UVM)

5

XMODEL: Enable Analog for SV/UVM
•A plug-in extension that enables fast and accurate

analog/mixed-signal simulation in SystemVerilog
• Event-driven: 10~100x faster than Real-Number Verilog
• Analog: supporting both functional and circuit-level models
• SystemVerilog: enabling analog verification in UVM

6

Event-Driven Simulation of Analog
•How do we extend the Verilog’s event-driven algorithm

to simulating analog circuits?
Digital

Analog

01 01

???

7

Expressing Analog Events
•XMODEL expresses analog signals in functional forms

instead of using a series of time-value pairs:

Accuracy relies on fine time step Events occur only when the
coefficients are updated

SPICE XMODEL

8

Propagating Analog Events
•With the signals transformed into Laplace s-domain:

•The response of a system can be computed in an event-
driven manner without time-step integration:

1
s

p

p s
ω

ω +
1 1

ps sω
−

+

pω

9

XMODEL’s Event-Driven Simulation
•XMODEL triggers very few events during simulation

and hence achieves very fast speed

Event Markers

10

Block-Level vs. Circuit-Level Models
Block-Level Model
(Signal-flow Model)

Circuit-Level Model
(Conservative System Model)

• A network of blocks
where signals flow in
one direction only

• A network of circuits
whose state is described
by voltages & currents

• e.g. loading effects

11

Need for Circuit-Level Models (CLMs)
•Circuit-level models are the most natural way to model

switching, nonlinear, and loading effects in analog
circuits

RL

IB/2

RC

CC

gm

in outRout

Cin f(Vin) Cin f(Vin)

Cin f(Vin)

Cin f(Vin)

Switching Behaviors Nonlinear Behaviors Loading Effects

12

CLM Support in XMODEL
• In XMODEL, one can describe analog circuits directly by

listing the circuit’s elements and devices
•XMODEL can simulate these models in SystemVerilog

in event-driven fashion without invoking SPICE

13

CLM Support (1): Circuit Clustering
•XMODEL partitions the circuit into clusters that can be

solved separately
•Signals across the cluster boundaries are unidirectional

Cluster 1 Cluster 2 Cluster 3

14

CLM Support (2): TF Extraction
•For each cluster, XMODEL extracts the transfer function

(TF) between its inputs and outputs
•Then, the XMODEL’s event-driven algorithm can

compute output events from the input events

Circuit Cluster

Differential
Algebraic
Equation

Transfer
Function

MNA PFE

15

PWL Models for Nonlinear Elements
•XMODEL models nonlinear elements (e.g. diodes and

transistors) using piecewise-linear (PWL) models
• In each operation region,

the circuit yields a linear TF
•Switch into a new TF

when the region changes

16

Structural Model Generation
•The first way to auto-generate models from circuits
•Model each device in the circuit individually
•Build the circuit model by connecting the device models

as in the original circuit
module ctle (

`input_xreal inp, inn, // input signals
`output_xreal outp, outn // output signals

);

xreal sp, sn;
xreal vdd;

vsource #(.mode("dc"), .dc(Vdd))
V1(.pos(vdd), .neg(`ground), .in(`ground));

isource #(.mode("dc"), .dc(Ib/2))
I1(.pos(sp), .neg(`ground), .in(`ground));
I2(.pos(sn), .neg(`ground), .in(`ground));

nmosfet #(.Kp(Gm), .Vth(Vth))
M1(.d(outn), .g(inp), .s(sp), .b(`ground)),
M2(.d(outp), .g(inn), .s(sn), .b(`ground));

resistor #(.R(Rload))
RL1(.pos(vdd), .neg(outp)),
RL2(.pos(vdd), .neg(outn));

capacitor #(.C(Cload))
CL1(.pos(vdd), .neg(outp)),
CL2(.pos(vdd), .neg(outn));

resistor #(.R(Rc)) RC1(.pos(sp), .neg(sn));
capacitor #(.C(Cc)) CC1(.pos(sp), .neg(sn));

endmoduleSPICE ElementsXMODEL Primitives

17

MODELZEN: Extract Bottom-Up Models
•MODELZEN can automatically generate bottom-up

analog models from your circuit schematics or netlists
•Extracts structural, circuit-level models by default
•Model parameters are calibrated via SPICE simulations
•Extracted models also simulate in an event-driven way

18

MODELZEN in Cadence Virtuoso
•With GLISTER and MODELZEN, you can auto-create

analog models from circuit schematics with just a
single mouse click!

19

Two-Stage Op Amp Example
•MODELZEN generates correct-by-construction,

structural models using circuit-level primitives

20

Op Amp Simulation Results
•Models both nonlinear behavior when it’s in open loop

and linear behavior when in closed-loop feedback

in

out

in

out
gain=-10

21

Pipelined ADC Example
•An 8-bit pipelined ADC designed in PTM 45nm with

dual power supplies (vddD=1.2V and vddA=3.3V)
•Operates at 100MHz with full-scale range of 0.5Vpp

22

CLM Extraction Approach (1)
•Assign MODELZEN pin properties so that digital I/O

pins have xbit or bit types with proper conversion
levels (1.2 or 3.3V)

Digital pins

pipelined_adc_ckt.MDAC:schematic

23

CLM Extraction Approach (2)
•Specify a list of digital cells in tech_config.py file so

that MODELZEN can extract simpler models for them
• 1.2V logic gates: std_inv, std_mux, std_fulladd, std_dff, …
• 3.3V logic gates: hv_inv, hv_nand2, hv_nor2, hv_xor, …
• 1.2V ↔3.3V level converters: conv_hi2low, conv_low2hi

subckt-specific device mapping
cells_digital = [

wildcard("std_*"),
wildcard("hv_*"),
wildcard("conv_*"),

]
devicemap_digital = derive_devicemap(devo_devicemap, convto_digital)
update_subcktmap(cells_digital, devicemap_digital)

24

CLM Extraction Approach (3)
•Specify a list of switch cells in tech_config.py file so

that their transistors can be extracted as switches
• e.g. switches used for switched-capacitor circuits

•Adding this option also helps:

cells_switch = [
"diffOTA_CMFB",
"sh_amp",
"MDAC",

]
devicemap_switch = derive_devicemap(devo_devicemap, convto_switch)
update_subcktmap(cells_switch, devicemap_switch)

devo_options['reduce_dev'] += ["nmosfet->switch", "pmosfet->switch"]

25

CLM Extraction Approach (3): MDAC
•We want to model the transistors in MDAC as switches

pipelined_adc_ckt.MDAC:schematic

26

Bottom-up Model Extraction
• Just clicking “Run MODELZEN” icon on the top-level

schematic extracts models from the entire circuit
•The extracted model is imported to an xmodel view

Run MODELZEN

27

Extracted SystemVerilog Models
•pipelined_adc_ckt.ADC_top:xmodel

28

Simulated Results: tb_rampinput
•pipelined_adc_ckt.ADC_top:tb_rampinput
•Simulation runtime: ~19 min.

Momentary glitches;
Not code errors

29

Simulated Results: tb_rampinput (2)
•Digital and residual outputs of the individual stages:

Vres1

Vres2

D1

D2

Vres3

Vres4

D3

D4

30

Simulated Results: tb_sineinput
•pipelined_adc_ckt.ADC_top:tb_sineinput
•Simulation runtime: ~20 min.

Momentary glitches;
Not code errors

31

Simulated Results: tb_sineinput (2)
•The residual outputs of the individual stages:

Vres1

Vres2

Vres3

Vres4

32

Structural Model Generation
•Pros: enables a push-button flow generating correct-

by-construction, SPICE-accurate analog models
without requiring analog expertise

•Cons: the resulting circuit-level models are low-
abstraction, transistor-based models that have
limited simulation speeds

•Q: Can we generate functional models using the
MODELZEN’s push-button flow?

33

Functional Model Generation
•Functional modeling focuses on the circuit’s functions

instead of its structure (i.e. topology):
•Choose a template model based on the circuit’s functions
•Calibrate its model parameters via SPICE characterization

34

User-Defined Model (UDM)
•The User-Defined Model (UDM) interface of MODELZEN

lets you generate higher-abstraction models with
SPICE-calibrated parameters for any selected parts of
the circuits

Use functional
models!

value gain, bandwidth, …

35

Functional Modeling with UDM
•For instance, you can auto-generate a functional

model for an oscillator circuit of which frequency
characteristics are calibrated by SPICE simulation

36

Defining UDM Mapping on Circuits
•Select part of the circuits to be mapped to a UDM and

right button click on “MODELZEN Properties”

37

Defining UDM Mapping on Circuits (2)
•Edit MODELZEN Properties dialog window will appear

where you can map each “pseudo-terminal”
to a UDM port and define UDM parameters

38

UDM Definition
•Each UDM is a Python class that defines:
•A list of terminals and option parameters
• Functional model template
•SPICE simulation steps to fit the model parameters
class pwm_v1 (devo_udm):

terms = {
'in' : dict(direction="input", sigtype="xreal", width=1),
'out' : dict(direction="output", sigtype="xbit", width=1),
'vpwr' : dict(direction="input", sigtype="xreal", width=1,

paramtype='real', prompt='Value', default=1.2),
'vgnd' : dict(direction="input", sigtype="xreal", width=1,

paramtype='real', prompt='Value', default=0.0),
'vbias' : dict(direction="input", sigtype="xreal", width=[0,None],

paramtype='real', prompt='Value', default=0.7),
'ibias' : dict(direction="input", sigtype="xreal", width=[0,None],

paramtype='real', prompt='Value', default=0.0),
}

params = {
'range_in' : dict(type="real_array", prompt="Input Range (min, max)", default=[0.2,0.8]),

}

39

Quest for Analog Model Templates
•Many circuits with analog inputs & outputs fall into:
•One-port model
•Multi-port impedance model
•Multi-port amplifier model

•Other circuits with digital inputs or outputs:
•Comparators and slicers
•Digital logic gates, flip-flops, and latches
•Delay lines and oscillators

40

One-Port Model
•For circuits producing voltages or currents without

inputs (e.g. reference generators)
•Thevenin/Norton-equivalent circuit models finite Rout

•V1 and R1 can be PWL functions to model nonlinearity
•R1 can be Z1(s) to model AC impedance

PWL,1

PWL,1

OUT1

OUT1

41

Flexible Port Widths
•Many of our UDM ports have variable widths, so that

each UDM can be mapped to a variety of circuits

•For example, our refgen UDM modeling one-port
circuits can have arbitrary number of vout’s and iout’s

UDM Port Description Parameter

vout Voltage output Iout bias

iout Current output Vout bias

mode Digital mode input
Voltage level
: level1[, level0]

42

Digital Mode Inputs
•Many analog circuits have digital mode inputs for

various purposes: e.g. trimming, power-down, enable, …
•These inputs don’t change the model template, but

change the model parameter values
• e.g. changing the output level or impedance

•Our UDMs support arbitrary number of ‘mode’ inputs
•Generated model contains a look-up table defining

parameter values for each combination of digital modes

43

Multi-Port Impedance Model
•For circuits having impedances between multiple ports
•Often, digital modes control their impedance values
• e.g. digitally-controlled resistors and capacitors, analog

multiplexer/demultiplexers (switch networks)

Digitally-adjustable
Capacitor

Analog
Mux/Demux

44

Multi-Port Amplifier Model
•For circuits amplifying/filtering from inputs to outputs
•Each input/output port network with finite and/or

nonlinear Zin(s) or Zout(s)
•Port-to-port transfer functions model DC gain, AC TF,

and/or nonlinearity between input & output ports
Input Port
Network

Output Port
Network

Port-to-Port
Transfer Functions

45

Bias Generator: biasgen
•Generates digitally-trimmable bias voltages via:
• First stage generating a reference current (iref) from vref
•Second stage scaling the current with trim<2:0>
•Third stage converting the current into vbp, vbn & vbcm

pipelined_adc_ckt.biasgen:schematic

46

UDM refgen for biasgen
•Models a circuit generating reference voltages or

currents controlled by digital mode inputs

UDM:refgen

47

Simulation Results: biasgen
•Testbench: pipelined_adc_ckt.biasgen:tb_run
•Measuring the bias voltage levels while varying trim

48

Sample-and-Hold Stage: sh_amp
•A switched-capacitor sample-and-hold amplifier
•A common-mode feedback (CMFB) circuit maintains the

output common-mode level at vcm

pipelined_adc_ckt.sh_amp:schematic

49

Differential OTA: diffOTA
•Designed as “telescopic

OTA” with boosted
cascodes
•Providing a large gain

with a single stage

pipelined_adc_ckt.diffOTA:schematic

50

UDM amp_linear for diffOTA
•Models linear amplifier networks with voltage or

current input/output’s
UDM:amp_linear

vbcm can be
adjusted by CMFB;
modeled as vin port

51

CMFB Circuit: diffOTA_CMFB
•Applies an offset between vbcm_in and vbcm_out

which is equal to the difference between the outp/outn
common-mode level and vcm

pipelined_adc_ckt.diffOTA_CMFB:schematic

52

Clock Generator: clkgen
• Inverter chains drive the clock loads and add delays

defining the non-overlapping periods
• ckD has 1.2V swing; others have 3.3V

ck_in
ck_out

ckD

ckB_d

ckB

ckA

ckA_d

pipelined_adc_ckt.clkgen:schematic

53

UDM delayline for clkgen
•Models a delay line with digital input/output’s which

can be gated or delay-adjusted depending on the
digital mode inputs

UDM:delayline

pipelined_adc_sol.clkgen:schematic

54

Simulation Results: sh_amp
•Now, generate a model for sh_amp
•And run pipelined_adc_ckt.sh_amp:tb_run

55

1.5-bit Sub-ADC: subADC
•A flash-type ADC made of R-string reference generator,

comparators, and encoder logic

pipelined_adc_ckt.subADC:schematic

56

Comparator Stage: comp
•Made of a pre-amplifier stage amplifying the difference

between Vin=inp-inn and Vref=refp-refn and a clocked
comparator (latch) stage detecting its polarity

pipelined_adc_ckt.comp:schematic

57

Pre-Amplifier Stage: comp_preamp
•A switched-capacitor circuit amplifying Vin-Vref

pipelined_adc_ckt.comp_preamp:schematic

58

Latch Stage: comp_latch
•A strongArm comparator detecting the polarity of

inp-inn at the falling edge of ckA

pipelined_adc_ckt.comp_latch:schematic

59

UDM comp_dev for comp_latch
•A custom UDM that models a clocked comparator

circuit with xreal-type analog inputs and xbit-type
digital outputs

UDM:comp_dev

60

Output Encoder Logic: subADC_encA
•Converts the thermometer-coded inputs (dh, dl) to

one-hot-coded outputs Q<2:0>, gated by ckB

pipelined_adc_ckt.subADC_encA:schematic

3.3V outputs
3.3V inputs

61

UDM comblogic for subADC_encA
•Models arbitrary combinational logic paths

UDM:comblogic

62

Output Encoder Logic: subADC_encD
•Converts the thermometer-coded inputs (dhb, dhl) to

binary-coded outputs D<1:0>, registered at falling
edge of ckB

pipelined_adc_ckt.subADC_encD:schematic

3.3V inputs
1.2V outputs

63

UDM comblogic for subADC_encD
•Can also model level converters

by setting input/output levels
UDM:comblogic

UDM:comblogic

64

UDM dflipflop for std_dff
•Models D-flipflops with optional set/reset inputs
•Auto-detects clock, set/reset & output polarities, and

sync/async types, …

UDM:dflipflop

65

Simulation Results: subADC
•Testbench: pipelined_adc_ckt.subADC:tb_run
•Sub-ADC produces both binary-coded output D<1:0>

and one-hot-coded output Q<2:0>

00 01 10

66

1.5-bit MDAC: MDAC
•Sub-DAC selects

vrefH, vcm, or
vrefL depending
on one-hot
coded Q<2:0>
•Q<2:0> is

qualified by ckB

pipelined_adc_ckt.MDAC:schematic

67

Simulation Results: MDAC
•Testbench: pipelined_adc_ckt.MDAC:tb_run
•Confirms gain = 2 and offset = -VFS/2, 0, and +VFS/2

Q = 001

Q = 010

Q = 100

68

1.5-bit Unit Stage: ADC_unitstage

pipelined_adc_ckt.ADC_unitstage:schematic

69

Simulation Results: ADC_unitstage
•Testbench: pipelined_adc_ckt.ADC_unitstage:tb_run

D=01D=00 D=10

70

Digital Combiner: combiner
•A cascade of shift-and-add stages

pipelined_adc_ckt.combiner:schematic

71

UDM comblogic for std_fulladd
•Static CMOS logic computing:

UDM:comblogic

pipelined_adc_sol.std_fulladd:schematic

72

Pipelined ADC: ADC_top
•Now we are ready to extract the top-level model of the

pipelined ADC!

pipelined_adc_ckt.ADC_top:schematic:

73

Simulated Results: tb_rampinput
•pipelined_adc_ckt.ADC_top:tb_rampinput
•Simulation runtime: 60 sec. (vs. 18.7 min. with CLM)

Due to uninitialized
internal states;
not errors

74

Simulated Results: tb_rampinput (2)
•Digital and residual outputs of the individual stages:

Vres1

Vres2

D1

D2

Vres3

Vres4

D3

D4

75

Simulated Results: tb_sineinput
•pipelined_adc_ckt.ADC_top:tb_sineinput
•Simulation runtime: 54 sec. (vs. 19.9 min. with CLM)

76

Simulated Results: tb_sineinput (2)
•The residual outputs of the individual stages:

Vres1

Vres2

Vres3

Vres4

77

Summary
•Demonstrated two ways of automatically extracting

bottom-up models from analog circuits
•Structural modeling guarantees correct-by-construction

models for all kinds of circuits
• Functional modeling yields higher-abstraction models

that run much faster
•Best results can be achieved by combining the two

•Now with the SystemVerilog models for analog circuits,
you can perform efficient verification for mixed-signal
SoC’s all in SystemVerilog/UVM!

