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Abstract—This paper demonstrates a UVM testbench that can measure the jitter tolerance (JTOL) characteristics of a high-speed 
wireline receiver. This JTOL measurement requires an iterative search finding the maximum magnitude of the sinusoidal jitter (SJ) 
that keeps the bit-error rate (BER) of the receiver below the target rate (e.g., 10-12). The presented UVM testbench adopts the reactive 
stimulus technique to perform the search for an analog/mixed-signal system, i.e., checking its BERs while varying the SJ frequencies 
and magnitudes. The UVM testbench also encapsulates all the analog/mixed-signal contents within the fixture module so that the rest 
of the testbench can be built using the standard UVM components. The model of the high-speed transceiver and the fixture 
instrumentations to apply stimuli and measure responses are composed with XMODEL primitives, which enable event-driven 
simulation of analog/mixed-signal circuits in SystemVerilog. A case with an example 16-Gb/s high-speed wireline receiver model 
shows that the presented testbench can measure the JTOL characteristics for 20 frequency points after performing 106 BER tests 
for a total duration of 41 minutes. 

I. INTRODUCTION 
A jitter tolerance (JTOL) test measures the resilience of a high-speed wireline receiver to the sinusoidal jitter (SJ) added to 

the incoming data stream [1]. As illustrated in Fig. 1, the test setup adds SJ to the transmitter clock and checks if the receiver 
can still operate with a bit-error rate (BER) below the target rate (e.g., 10-12). While the standards specify the minimum SJ 
magnitude that must be tolerated for each SJ frequency (called the JTOL mask), the actual JTOL test looks for the maximum 
SJ magnitude that can be tolerated for each SJ frequency. 

Since each trial measuring the BER consumes considerable time, it is important to minimize the number of trials required to 
measure the whole JTOL characteristic curve. In other words, it is not feasible to measure the JTOL characteristics by blindly 
trying all SJ magnitude values for a given SJ frequency and later choosing the maximum value that meets the target BER. 
Instead, a reactive testbench that can judiciously pick the next trial point considering the outcomes of the previous trials is 
necessary.  

This paper shows how one can write such a reactive testbench that can measure the JTOL characteristics of a high-speed 
wireline receiver in UVM. The presented UVM testbench adopts the reactive stimulus technique in [2] and follows the 
guidelines in [3], encapsulating all the analog/mixed-signal models and instrumentations within a fixture module and 

 

Figure 1. The jitter tolerance test of a high-speed receiver: (a) the test setup and (b) measured results. 



 

 

 

composing the rest of the testbench with the standard UVM components only. With a 16-Gb/s high-speed wireline transceiver 
model and its fixture module described with XMODEL primitives [4], the UVM testbench can measure the JTOL 
characteristics for 20 frequency points with target BER of 10-12 after performing 106 BER tests for a total duration of 41 minutes.  

The rest of the paper is organized as follows. Section II first describes the model of our system under verification, i.e., the 
model of a high-speed wireline transceiver. And Section III presents the UVM testbench that can measure its JTOL 
characteristics using a reactive stimulus technique. Finally, Section IV discusses the simulation results and Section V concludes 
the paper. 

II. MODELING OF HIGH-SPEED WIRELINE TRANSCEIVER  
High-speed wireline transceivers achieve multi-Gb/s data rates transferring digital data from one IC chip to another via three 

key enabling elements: (1) impedance-controlled channel, (2) high-speed transmitter and receiver circuits, and (3) precise 
timing generation and recovery circuits. Fig. 2 illustrates the overall block diagram of an example 16-Gb/s high-speed wireline 
transceiver, employing these key enabling elements. First, a charge-pump phase-locked loop (TX-PLL) generates a 16-GHz 
clock (tx_clk) from a 2-GHz reference (tx_ref_clk). Second, a differential current-mode transmitter with 1-tap de-emphasis 
(TX-EQ) drives the input data stream (Din) onto a pair of transmission lines with termination loads. Third, on the receiver side, 
a continuous-time linear equalizer stage (RX-EQ) compensates the frequency-dependent loss in the channel, so that sampling 
its output can produce the output data stream (Dout). Fourth, the clock that triggers the data samplers (rx_clk) is recovered by 
a clock-and-data recovery loop (RX-CDR), which is in turn made of an internal PLL that generates a set of multi-phase clocks 
from a reference (rx_ref_clk) and a phase interpolator (PI) stage that synthesizes them into the clock with a desired phase, as 
directed by bang-bang phase detector (PD) and digital loop filter (LF) blocks.  

XMODEL from Scientific Analog [4] provides a set of primitives that can model various analog/mixed-signal circuits and 
simulate them efficiently in SystemVerilog. Especially when modeling and simulating a high-speed wireline transceiver in 
SystemVerilog, XMODEL provides many advantages compared to alternative solutions, such as real-number modeling (RNM). 
First, XMODEL is capable of fast, event-driven simulation of analog signals propagating through the transmission line channels, 
based on its equation-based signal type called xreal [5]. Second, with another signal type called xbit, it can express the precise 
timing of the PLL and CDR clocks without being limited to the simulator’s timestep. Third, XMODEL can describe analog 
circuits directly as a network of circuit elements and simulate their voltages and currents. For instance, one can describe the 
differential current-mode transmitter with 1-tap de-emphasis directly as two differential pairs with shorted outputs, each 
steering its own bias current based on the current-cycle input and previous-cycle input, respectively. Also, the transmission 
lines modeled with tline primitives can have frequency-dependent losses as well as reflections due to impedance mismatch. 
Fourth, XMODEL can propagate probability information through some of its primitives, allowing efficient statistical simulation 

Figure 2. Overall block diagram of a high-speed wireline transceiver model. 



 

 

 

that can estimate the BER of a high-speed wireline transceiver as low as 10-20 in a few minutes. This last capability is particularly 
critical to our JTOL testbench, since validating a BER less than 10-12 via a plain Monte-Carlo simulation would take at least ~3 
years even when the simulator can run 10,000 bits per second.  

Fig. 3 illustrates the case of modeling the TX-EQ block in Fig. 2, i.e., the differential current transmitter with 1-tap de-
emphasis using the XMODEL primitives. Note that a model with XMODEL primitives can be described either as a schematic 
(left) or as a structural model in SystemVerilog (right). Functionality-wise, this TX-EQ block drives its two outputs with a pair 
of pull-down currents, whose net difference is equal to the input filtered by the discrete-time transfer function H(z) = 1-αz-1. 
Component-wise, the block is made of two differential pairs sharing the output nodes. Each differential pair is driven by the 
current-cycle input and previous-cycle input retimed to the clock’s rising edge, produced by a series of two D flip-flops 
registering the input signal, respectively. The ratio between the tail currents of the two differential pairs sets the value of α. 
The two resistors connected between the outputs and supply voltage serve both as load resistances and as terminations matched 
to the characteristic impedance of the transmission lines. 

As listed in the SystemVerilog structural model, the TX-EQ block is modeled using the logic primitives like dff_xbit, function 
primitives like transition, and circuit primitives like isource, nmosfet, and resistor. The transition primitive is analogous to the 
transition() operator in Verilog-A, converting the digital input to analog output with finite rise/fall transition times. For the part 
modeled with the circuit primitives, XMODEL computes all the node voltages and branch currents as governed by the Kirchhoff 
circuit laws. Nonetheless, its simulation does not invoke a SPICE engine. The XMODEL engine interfacing via SystemVerilog 
DPI can simulate all the analog waveforms in an event-driven manner using the equation-based, xreal-type representation. 

 

 

Figure 3. SystemVerilog model of the differential current-mode transmitter with 1-tap de-emphasis equalization  
(TX-EQ) using XMODEL primitives. 

module tx_eq ( 
    output xreal out_neg, 
    output xreal out_pos, 
    input xbit clk, 
    input xbit in, 
    input xreal vdd 
); 
 
// signal declarations 
xreal drv0p, drv0n, drv1p, drv1n; 
xreal tail0, tail1; 
xbit in0, in1; 
 
// instance declarations 
isource     #(.mode("dc"), .dc(0.00875))  
            I0 (.neg(`ground), .pos(tail0), .in(`ground)); 
isource     #(.mode("dc"), .dc(0.00125))  
            I1 (.neg(`ground), .pos(tail1), .in(`ground)); 
nmosfet     #(.W(2e-05), .L(4e-08), .Kp(2e-05), .Vth(0.5)) 
            M0 (.g(drv0p), .d(out_neg), .b(`ground), .s(tail0)); 
nmosfet     #(.W(2e-05), .L(4e-08), .Kp(2e-05), .Vth(0.5)) 
            M1 (.g(drv0n), .d(out_pos), .b(`ground), .s(tail0)); 
nmosfet     #(.W(2e-05), .L(4e-08), .Kp(2e-05), .Vth(0.5)) 
            M2 (.g(drv1p), .d(out_neg), .b(`ground), .s(tail1)); 
nmosfet     #(.W(2e-05), .L(4e-08), .Kp(2e-05), .Vth(0.5)) 
            M3 (.g(drv1n), .d(out_pos), .b(`ground), .s(tail1)); 
resistor    #(.R(50)) R0 (.neg(out_pos), .pos(vdd)); 
resistor    #(.R(50)) R1 (.neg(out_neg), .pos(vdd)); 
transition  #(.value0(0.0), .value1(1.0)) XP0 (.out(drv0p), .in(in0)); 
transition  #(.value0(1.0), .value1(0.0)) XP1 (.out(drv0n), .in(in0)); 
transition  #(.value0(1.0), .value1(0.0)) XP2 (.out(drv1p), .in(in1)); 
transition  #(.value0(0.0), .value1(1.0)) XP3 (.out(drv1n), .in(in1)); 
dff_xbit    XP4 (.clk(clk), .d(in), .q(in0)); 
dff_xbit    XP5 (.clk(clk), .d(in0), .q(in1)); 
 
endmodule   // tx_eq 



 

 

 

Fig. 4 shows the simulated eye diagrams of the described high-speed wireline transceiver model. An eye diagram is 
constructed by overlapping the received signal waveforms of each bit period and can visually indicate how good a separation 
is maintained between the levels of symbol 0 and symbol 1 and between the symbols adjacent in time. Fig. 4(a) shows the eye 
diagram without equalization, which is completely closed due to the frequency-dependent loss in the channel. Fig. 4(b) is the 
eye diagram with the transmitter-side equalization (TX-EQ) enabled, showing that it can open the eye to some degree by 
compensating the loss. Fig. 4(c) shows that the eye opening can be further improved with the receiver-side equalization (RX-
EQ) enabled as well. These results demonstrate that with XMODEL primitives, one can compose a SystemVerilog model for 
a fully-functional high-speed wireline transceiver, which can serve as a device under verification (DUV) in the UVM testbench 
described next. 

(a)

(b)

(c)
 

Figure 4. Simulated eye diagrams of the high-speed transceiver model: (a) with both TX-EQ and RX-EQ disabled,  
(b) with TX-EQ enabled, (c) with both TX-EQ and RX-EQ enabled. 

  



 

 

 

 III. UVM TESTBENCH FOR JTOL MEASUREMENT 
Fig. 5 illustrates the organization of the proposed UVM testbench that measures the JTOL characteristics of a high-speed 

wireline receiver. Following the approach described in [3], all the analog-specific details are encapsulated within a fixture 
module. The fixture module contains the models of the high-speed wireline transmitter-receiver pair and the instrumentations 
to apply the SJ with the prescribed frequency and magnitude and measure the resulting BER. The transceiver models and 
instrumentations composed with XMODEL primitives enable a seamless simulation of such an analog/mixed-signal system in 
SystemVerilog and also a fast estimation of BERs as low as 10-12 with only ~30,000 samples. 

Besides the fixture module, the rest of the testbench are built with standard UVM components. The key difference from the 
testbench in [3] is that the driver agent also serves as the monitor agent, as it must observe the response to choose the next 
stimulus. The sequence and driver are the main components performing the iterative search using the reactive stimulus 
technique [2]. The sequencer has two-way communication with the driver, sending the next packet to drive and receiving the 
response from the fixture. The packet contains the SJ frequency and magnitude value to try, and the response contains the 
corresponding BER value. All the BER trial results are broadcast to the scoreboard which book-keeps the largest SJ magnitude 
that meets the target BER for each SJ frequency. When all the trials are completed, the scoreboard reports the final JTOL results. 

 

Figure 5. Conceptual diagram of the UVM testbench performing JTOL tests with reactive stimulus technique.  

 

A. Fixture Module 
The fixture module instantiates the high-speed wireline transceiver model and also contains the instrumentations to measure 

its JTOL characteristics. Also, it is the only module that contains the XMODEL primitives. Fig. 6 lists the code of the fixture 
module. 

The fixture module handshakes with the driver component using the START and DONE signals to perform multiple BER 
measurements within a single simulation run. That is, when the driver wants to initiate a new BER measurement with a set of 
SJ frequency and magnitude values (SJ_freq and SJ_mag), it asserts START to 1. Then, the fixture module carries out the test 
by applying the corresponding SJ to the transmitter clock (tx_clk), feeding the pseudo-random bit sequence (PRBS) to the data 
input (Din), and supplying the receiver reference clock (rx_ref_clk) and supply voltage (vdd). It initially waits for a period of 
time prescribed by t_lock and starts collecting the bit error probabilities for a period of time prescribed by t_meas. After 
completing the measurement, it sends the resulting BER value back to the driver and asserts DONE to 1. 



 

 

 

 

Figure 6. The fixture module including the analog/mixed-signal instrumentations for measuring the JTOL 
characteristics of a high-speed wireline transceiver. 

interface IF_t (input bit RST); 
    bit START, DONE;  // handshaking signals 
    real SJ_freq, SJ_mag;  // stimulus parameters 
    real BER;   // measurement results 
endinterface: IF_t 
 
module FIXTURE (IF_t IF); 
    parameter real data_freq = 16.0e9;      // data rate 
    parameter real ref_freq = 2.0e9;        // RX reference clock frequency 
    parameter real t_lock = 200e-9;         // initial lock time 
    parameter real t_meas = 2e-6;           // measurement time 
 
    xbit tx_ref_clk, rx_ref_clk, rx_clk; 
    xbit Din, Dout; 
    xreal vdd; 
    xreal n1, n2, n3, freq; 
 
    real SJ_freq, SJ_amp; 
    longint num_bit, num_err; 
    real prb_err, sum_prb; 
    wire bit_err; 
    bit init; 
 
    // DUT 
    hslink_jtol     hslink(.tx_clk, .rx_ref_clk, .rx_clk, .Din, .Dout, .vdd); 
 
    // interface handshaking 
    always begin: LOOP 
        @(posedge IF.START); 
        IF.DONE = 0; 
        SJ_freq = IF.SJ_freq; 
        SJ_amp = M_PI*IF.SJ_mag; 
 
        init = 1; 
        #($xmodel_reltime(t_lock)); 
        init = 0; 
        #($xmodel_reltime(t_meas)); 
 
        IF.BER = sum_prb/num_bit; 
        IF.DONE = 1; 
    end: LOOP 
 
    // transmitter clock with sinusoidal jitter 
    real_to_xreal   U1 (.in(SJ_freq), .out(freq)); 
    integ_mod       #(.scale(2*M_PI), .modulus(2*M_PI)) U2 (.in(freq), .out(n1)); 
    sin_func        U3 (.in(n1), .out(n2)); 
    scale_var       U4 (.in(n2), .out(n3), .scale(SJ_amp)); 
    phase_to_clk    #(.freq(data_freq)) U5 (.in(n3), .out(tx_clk)); 
 
    // clock, data, and supply sources 
    prbs_gen        U6 (.trig(tx_clk), .out(Din)); 
    clk_gen         #(.freq(ref_freq)) U7 (rx_ref_clk); 
    dc_gen          #(.value(1.2)) U8 (vdd); 
 
    // BER measurement 
    meas_ber        U9 (.bit_err(bit_err), .prb_err(prb_err), 
                        .in(Dout), .in_ref(Dout), .clk(rx_clk)); 
 
    always @(posedge `value(rx_clk) or init) begin 
        if (init) begin 
            num_bit = 0; 
            num_err = 0; 
            sum_prb = 0.0; 
        end 
        else begin 
            num_bit += 1; 
            num_err += bit_err; 
            sum_prb += prb_err; 
        end 
    end 

 
endmodule: FIXTURE 



 

 

 

Fig. 7 illustrates the instrumentation with XMODEL primitives to generate a clock with SJ in a schematic form. First, the 
real-type SJ_freq input is converted to an xreal-type signal using a real_to_xreal primitive. This signal then drives an 
integ_mod primitive, which performs the integral and modulo operations and generates a sawtooth waveform ranging between 
0 and 2π with a frequency equal to SJ_freq. The following sin_func and scale_var primitives convert this sawtooth waveform 
to a sinusoidal waveform with the frequency equal to SJ_freq and magnitude equal to SJ_amp. The sin_func primitive computes 
the sine function of the input and the scale_var primitive scales the input by a variable factor. Finally, a phase_to_clk primitive 
takes the resulting signal as its input and produces a fixed-frequency output clock (tx_clk) whose phase changes as the sinusoidal 
function of time with a frequency equal to SJ_freq and magnitude equal to SJ_amp.  

 

Figure 7. The fixture instrumentations with XMODEL primitives to generate a clock with sinusoidal jitter (SJ). 

 

B. Driver Component 
The driver component in this UVM testbench relays the information between the sequencer component and fixture module, 

and also broadcasts the BER measurement results to the scoreboard component. Fig. 8 lists the code of the driver component.  

Once the reset signal (RST) is de-asserted, the driver initiates a new BER measurement whenever it receives a packet (i.e., a 
sequence item) from the sequencer. That is, when it retrieves a packet sent by the sequencer using the get_next_item() method, 
it drives the SJ_freq and SJ_mag signals to the fixture module using the values prescribed in the packet and asserts START to 
1. Then, it waits until the fixture module responds with DONE asserted to 1, indicating that it has completed the measurement. 
It then prepares a response packet with the BER measurement result and sends it back to the sequencer using the item_done() 
method [2]. The driver also sends the result to the scoreboard by writing the response packet to the analysis port AP0, which 
forwards the packet to the analysis port AP1 of the driver agent and then to AP2 of the scoreboard component.  

typedef virtual IF_t VIF_t; 
 
class DRIVER extends uvm_driver #(PACKET); 
    `uvm_component_utils(DRIVER) 
 
    uvm_analysis_port #(PACKET) AP0; 
    VIF_t VIF; 
    PACKET PKT, RSP; 
 
    function new(string INAME, uvm_component PARENT); 
        super.new(INAME, PARENT); 
    endfunction: new 
 
    function void build_phase(uvm_phase phase); 
        AP0 = new("AP0", this); 
        uvm_config_db #(VIF_t)::get(this, "", "Key_VIF", VIF); 
    endfunction: build_phase 
 
    task run_phase(uvm_phase phase); 
        VIF.START = 0; 
        wait(!VIF.RST); 
 
        forever begin: LOOP 



 

 

 

            // apply stimuli 
            seq_item_port.get_next_item(PKT); 
            if (!$cast(RSP, PKT.clone())) `uvm_fatal("DRIVER", "failed casting PKT to RSP"); 
            RSP.set_id_info(PKT); 
 
            VIF.SJ_freq = PKT.SJ_freq; 
            VIF.SJ_mag = PKT.SJ_mag; 
            VIF.START = 1; 
 
            // collect responses 
            @(posedge VIF.DONE); 
            RSP.BER = VIF.BER; 
            VIF.START = 0; 
            seq_item_port.item_done(RSP); 
            AP0.write(RSP); 
 
            uvm_report_info("RUN", 
                $sformatf("\n  | #%3d SJ freq=%e Hz, mag=%e UIpp --> BER=%e", PKT.tag, PKT.SJ_freq, PKT.SJ_mag, VIF.BER), 
                UVM_HIGH 
            ); 
 
            // intermission time 
            #(1ns); 
        end:  LOOP 
    endtask: run_phase 
 
endclass: DRIVER 

Figure 8. The driver component initiating a new BER measurement when it receives a packet from the sequencer 
and sending the BER result back to the sequencer when the fixture module completes the measurement. 

C. Sequencer Component 
The sequencer component is the key element in this UVM testbench, as it performs the iterative search to find the maximum 

SJ magnitude for which the high-speed wireline receiver can achieve a satisfactory BER (e.g., < 10-12) for each SJ frequency. 
Fig. 9 lists the code of the sequencer component.  

The sequencer launches a series of BER measurement tests to iteratively find the maximum tolerable SJ magnitude. Each 
BER test is initiated by writing the SJ frequency and magnitude values (SJ_freq and SJ_max) to the packet PKT, sending the 
packet to the driver using the start_item() and finish_item() methods, and waiting for the driver’s response using the 
get_response() method. The response packet RSP contains the measured BER for the given SJ conditions. Ref. [2] explains 
this reactive stimulus technique in detail. 

To minimize the number of BER tests required to find the JTOL characteristics, the sequencer uses an algorithm that 
combines a coarse-resolution linear search and fine-resolution binary search. The search for the maximum SJ magnitude starts 
from the highest SJ frequency value and progresses towards the lowest SJ frequency value. A general JTOL characteristic curve 
has a shape shown in Fig. 1(b), where at the highest SJ frequency, the maximum tolerable SJ magnitude is bounded to below 
1.0UIpp and it gradually increases as the SJ frequency decreases. To exploit this smoothness of the JTOL characteristic curve, 
the search at the highest SJ frequency uses 0.5UIpp as the initial SJ magnitude, and the subsequent searches at the lower SJ 
frequencies use the previously-found maximum tolerance SJ magnitude as the initial SJ magnitude. 

First, the coarse-resolution linear search aims to identify a range of SJ magnitude that encloses the maximum tolerable SJ 
magnitude. In other words, it uses a linear search algorithm with a fixed increment mag_inc set to 20% of the initial SJ 
magnitude value and finds a range [mag_min, mag_max] where the BER is satisfactory for SJ magnitude equal to mag_min 
and not satisfactory for SJ magnitude equal to mag_max, assuming that the BER monotonically decreases as the SJ magnitude 
increases. To do so, the algorithm increments the SJ magnitude in one direction until it finds a transition from a satisfactory 
BER to an unsatisfactory BER, or a transition from an unsatisfactory BER to a satisfactory BER. The search direction and 
polarity of the sought transition depends on the BER outcome of the first trial.  

Next, the fine-resolution binary search aims to narrow down the SJ magnitude range [mag_min, mag_max] until the ratio of 
mag_max/mag_min becomes less than 1.05. At each iteration, it selects the geometric mean of mag_min and mag_max as the 
new trial value and updates the lower or upper limit of the current range depending on its BER outcome. The geometric mean 



 

 

 

instead of the arithmetic mean is used considering that the JTOL characteristic curve is plotted in log scale. When the criteria 
is met, the sequencer concludes the search for the current SJ frequency value and moves on to the next SJ frequency value. 

 

 

Figure 9. The sequencer component performing iterative search to find the maximum SJ magnitude that keeps the 
BER below the target rate. 

class SEQ_JTOL extends uvm_sequence #(PACKET); 
    `uvm_object_utils(SEQ_JTOL) 
 
    // parameters from command-line options 
    real freq_min = 5e6;        // minimum value of JTOL frequency 
    real freq_max = 5e9;        // maximum value of JTOL frequency 
    int freq_numpt = 20;        // number of JTOL frequency points 
    real BER_tol = 1e-12;       // BER tolerance 
 
    PACKET PKT, RSP; 
    real freq_ratio, mag_max, mag_min, mag_inc; 
    int flag; 
 
    function new(string INAME="SEQ_JTOL"); 
        super.new(INAME); 
    endfunction: new 
 
    task body(); 
        PKT = PACKET::type_id::create("PKT"); 
        PKT.BER_tol = BER_tol; 
        freq_ratio = $pow(freq_max/freq_min, 1.0/(freq_numpt-1)); 
 
        for (int i=0; i<freq_numpt; i++) begin:LOOP 
            PKT.tag = freq_numpt-i; 
            PKT.SJ_freq = (i == 0) ? freq_max : PKT.SJ_freq/freq_ratio; 
            PKT.SJ_mag = (i == 0) ? 0.5 : PKT.SJ_mag; 
            mag_max = 1.0; 
            mag_min = 0.01; 
            mag_inc = 0.2*PKT.SJ_mag; 
            flag = 0; 
 
            // phase 1: linear search to find a failing point 
            while (1) begin 
                start_item(PKT); 
                finish_item(PKT); 
                get_response(RSP); 
 
                if (RSP.BER < RSP.BER_tol) begin 
                    mag_min = PKT.SJ_mag; 
                    PKT.SJ_mag += mag_inc; 
                    if (flag == -1) break; 
                    else flag = 1; 
                end 
                else begin 
                    mag_max = PKT.SJ_mag; 
                    PKT.SJ_mag -= mag_inc; 
                    if (flag == 1) break; 
                    else flag = -1; 
                end 
            end 
 
            // phase 2: binary search to find the pass/fail boundary 
            while (mag_max/mag_min > 1.05) begin 
                PKT.SJ_mag = $sqrt(mag_max * mag_min); 
                start_item(PKT); 
                finish_item(PKT); 
                get_response(RSP); 
 
                if (RSP.BER < RSP.BER_tol) mag_min = PKT.SJ_mag; 
                else mag_max = PKT.SJ_mag; 
            end 
        end:  LOOP 
    endtask: body 
 
endclass: SEQ_JTOL 



 

 

 

D. Scoreboard Component 
The scoreboard component receives all the BER measurement results broadcast by the driver component and keeps track of 

the largest SJ magnitude that satisfies the target BER for each SJ frequency. Fig. 10 lists the code of the scoreboard component. 

The scoreboard component uses an instance of a custom UVM object named SCORECARD to do the book-keeping. This 
instance named SCD contains an associative array of struct-type elements called DATA, which stores the largest SJ magnitude 
that so far satisfied the target BER for each SJ frequency. For convenience, this associative array DATA is indexed by an integer 
value (tag), each value of which corresponds to a unique SJ frequency value. 

The scoreboard contains a FIFO that buffers the response packets broadcast by the driver component and whenever it finds 
a new packet arrived, the scoreboard updates the content of SCD.DATA. That is, if the response packet contains a result with a 
satisfactory BER using the larger SJ magnitude for the given SJ frequency, the scoreboard updates the largest SJ magnitude 
value stored in SCD.DATA. As a result, when all the searches are over, SCD.DATA will have the full JTOL characteristics of 
the high-speed wireline receiver under verification. 

 

Figure 10. The scoreboard component keeping track of the largest SJ magnitude that satisfies the target BER for each 
SJ frequency. 

class SCOREBOARD extends uvm_scoreboard; 
    `uvm_component_utils(SCOREBOARD) 
 
    SCORECARD SCD; 
    PACKET PKT; 
 
    uvm_analysis_export #(PACKET) AP2; 
    uvm_tlm_analysis_fifo #(PACKET) FIFO; 
 
    function new(string INAME, uvm_component PARENT); 
        super.new(INAME, PARENT); 
        SCD = new("SCD"); 
    endfunction: new 
 
    function void build_phase(uvm_phase phase); 
        AP2 = new("AP2", this); 
        FIFO = new("FIFO", this); 
    endfunction: build_phase 
 
    function void connect_phase(uvm_phase phase); 
        super.connect_phase(phase); 
        AP2.connect(FIFO.analysis_export); 
    endfunction: connect_phase 
 
    task run_phase(uvm_phase phase); 
        int N; 
        forever begin: SCORING 
            FIFO.get(PKT); 
            N = PKT.tag; 
 
            if (SCD.DATA.exists(N)) begin 
                if (PKT.BER < PKT.BER_tol && SCD.DATA[N].mag < PKT.SJ_mag) 
                    SCD.DATA[N].mag = PKT.SJ_mag; 
            end 
            else begin 
                SCD.DATA[N].freq = PKT.SJ_freq; 
                SCD.DATA[N].mag = (PKT.BER < PKT.BER_tol) ? PKT.SJ_mag : 0.0; 
            end 
            SCD.num_trials++; 
        end: SCORING 
    endtask: run_phase 
 
    function void report_phase(uvm_phase phase); 
        SCD.print(SCD.printer); 
    endfunction: report_phase 
 
endclass: SCOREBOARD 



 

 

 

For completeness, Fig. 11 lists the code of the SCORECARD object class. It also defines a custom printing method via 
do_print() function, which prints out the measured JTOL characteristics in a table format when all the BER trial tests are 
finished. 

 

Figure 11. The scorecard class for book-keeping the BER measurement results and  
printing the final JTOL characteristics. 

 IV. SIMULATION RESULTS 
The described UVM testbench along with the 16-Gb/s high-speed wireline transceiver model is run with Synopsys’ VCS and 

Scientific Analog’s XMODEL. Fig. 12 shows the simulation log printed by UVM, listing the results of the 106 BER 
measurement tests performed during the iterative search process. On a 64-bit Linux machine with 2.3-GHz 4-core Intel Core-
i7 processor and 8-GB memory, it took a total of 41 minutes to measure the JTOL characteristics over 20 SJ frequency points 
ranging from 5-MHz to 5-GHz. It means that each BER test took about 23 seconds in average. The assumed initial locking 
time (t_lock) was 200ns and measurement time (t_meas) was 2μs. Thanks to the statistical simulation capability of XMODEL, 
it was possible to measure the BER as low as 10-9~10-16 by running only 32,000 bit samples. 

 

typedef struct { 
    real freq;       // JTOL frequency 
    real mag;        // JTOL magnitude 
} SCD_t; 
 
class SCORECARD extends uvm_object; 
 
    SCD_t DATA[int]; 
    int num_trials = 0; 
    uvm_table_printer printer; 
 
    function new(string INAME); 
        super.new(INAME); 
        printer = new(); 
    endfunction: new 
 
    function void do_print(uvm_printer printer); 
        string RULING; 
        int N; 
 
        // printer knob settings 
        printer.knobs.header     = 1'b0; 
        printer.knobs.identifier = 1'b1; 
        printer.knobs.full_name  = 1'b0; 
        printer.knobs.type_name  = 1'b0; 
        printer.knobs.size       = 1'b0; 
        printer.knobs.prefix     = ""; 
 
        // print jitter tolerance results 
        RULING = {48{"-"}}; 
        printer.print_generic("", "", 0, RULING); 
        printer.print_generic("", "", 0, "JITTER TOLERANCE (JTOL)"); 
        printer.print_generic("", "", 0, "INDEX     FREQUENCY(Hz)   MAGNITUDE(UIpp)"); 
        printer.print_generic("", "", 0, RULING); 
 
        foreach (DATA[N]) begin: PRINT_LINE 
            printer.print_generic("", "", 0, $sformatf("%-8d  %.4e      %.4f", N, DATA[N].freq, DATA[N].mag)); 
        end: PRINT_LINE 
 
        printer.print_generic("", "", 0, RULING); 
        printer.print_generic("", "", 0, $sformatf("TOTAL NUMBER OF TRIALS: %-8d", num_trials)); 
        printer.print_generic("", "", 0, {RULING, "\n"}); 
        printer.print_array_footer(); 
    endfunction: do_print 
 
endclass: SCORECARD 



 

 

 

 

 

Figure 12. The UVM simulation log listing the BER tests being performed during the iterative search process. 

 

Finally, Fig. 13 shows the scoreboard report listing the maximum tolerance SJ magnitudes collected for 20 SJ frequencies 
ranging from 5-MHz to 5-GHz and the plot of the corresponding JTOL characteristics. The measurement results show that the 
high-speed wireline receiver has the worst-case timing margin of 0.1894UIpp, and tracking bandwidth of ~200MHz. The former 
is indicated by the worst-case JTOL in the high-frequency range and the latter is by the knee point of the JTOL curve. For a 
bang-bang controlled CDR, a common cause of insufficient timing margin is the excessive dithering jitter, which can be 
mitigated by either reducing the phase step (e.g., enhancing the phase interpolator resolution) or using a decimation filter at the 
phase detector output. However, these remedies can reduce the tracking bandwidth of the CDR. A judicious design striking the 
balance between these two competing objectives is a key to the high-speed wireline receiver design. 

 

UVM_INFO @ 2210.000ns: uvm_test_top.E.AGNT.DRV [RUN] 
  | # 20 SJ freq=5.000000e+09 Hz, mag=5.000000e-01 UIpp --> BER=6.033595e-04 
UVM_INFO @ 4411.000ns: uvm_test_top.E.AGNT.DRV [RUN] 
  | # 20 SJ freq=5.000000e+09 Hz, mag=4.000000e-01 UIpp --> BER=4.253071e-06 
UVM_INFO @ 6612.000ns: uvm_test_top.E.AGNT.DRV [RUN] 
  | # 20 SJ freq=5.000000e+09 Hz, mag=3.000000e-01 UIpp --> BER=4.559507e-09 
UVM_INFO @ 8813.000ns: uvm_test_top.E.AGNT.DRV [RUN] 
  | # 20 SJ freq=5.000000e+09 Hz, mag=2.000000e-01 UIpp --> BER=4.824476e-13 
UVM_INFO @ 11014.000ns: uvm_test_top.E.AGNT.DRV [RUN] 
  | # 20 SJ freq=5.000000e+09 Hz, mag=2.449490e-01 UIpp --> BER=3.271928e-11 
UVM_INFO @ 13215.000ns: uvm_test_top.E.AGNT.DRV [RUN] 
  | # 20 SJ freq=5.000000e+09 Hz, mag=2.213364e-01 UIpp --> BER=3.781672e-12 
UVM_INFO @ 15416.000ns: uvm_test_top.E.AGNT.DRV [RUN] 
  | # 20 SJ freq=5.000000e+09 Hz, mag=2.103979e-01 UIpp --> BER=1.263946e-12 
UVM_INFO @ 17617.000ns: uvm_test_top.E.AGNT.DRV [RUN] 
  | # 20 SJ freq=5.000000e+09 Hz, mag=2.051331e-01 UIpp --> BER=7.470467e-13 
UVM_INFO @ 19818.000ns: uvm_test_top.E.AGNT.DRV [RUN] 
  | # 19 SJ freq=3.475964e+09 Hz, mag=2.051331e-01 UIpp --> BER=2.923724e-15 
UVM_INFO @ 22019.000ns: uvm_test_top.E.AGNT.DRV [RUN] 
  | # 19 SJ freq=3.475964e+09 Hz, mag=2.461597e-01 UIpp --> BER=8.445417e-14 
UVM_INFO @ 24220.000ns: uvm_test_top.E.AGNT.DRV [RUN] 
  | # 19 SJ freq=3.475964e+09 Hz, mag=2.871863e-01 UIpp --> BER=2.007209e-12 
UVM_INFO @ 26421.000ns: uvm_test_top.E.AGNT.DRV [RUN] 
  | # 19 SJ freq=3.475964e+09 Hz, mag=2.658829e-01 UIpp --> BER=4.560037e-13 
UVM_INFO @ 28622.000ns: uvm_test_top.E.AGNT.DRV [RUN] 
| # 19 SJ freq=3.475964e+09 Hz, mag=2.763294e-01 UIpp --> BER=7.860811e-13 
 

(... omitted for brevity ...) 
 
  | #  2 SJ freq=7.192249e+06 Hz, mag=4.179040e+00 UIpp --> BER=2.324675e-19 
UVM_INFO @ 213506.000ns: uvm_test_top.E.AGNT.DRV [RUN] 
  | #  2 SJ freq=7.192249e+06 Hz, mag=5.014848e+00 UIpp --> BER=1.745598e-17 
UVM_INFO @ 215707.000ns: uvm_test_top.E.AGNT.DRV [RUN] 
  | #  2 SJ freq=7.192249e+06 Hz, mag=5.850657e+00 UIpp --> BER=1.286969e-12 
UVM_INFO @ 217908.000ns: uvm_test_top.E.AGNT.DRV [RUN] 
  | #  2 SJ freq=7.192249e+06 Hz, mag=5.416655e+00 UIpp --> BER=3.667517e-16 
UVM_INFO @ 220109.000ns: uvm_test_top.E.AGNT.DRV [RUN] 
  | #  2 SJ freq=7.192249e+06 Hz, mag=5.629475e+00 UIpp --> BER=4.189074e-15 
UVM_INFO @ 222310.000ns: uvm_test_top.E.AGNT.DRV [RUN] 
  | #  1 SJ freq=5.000000e+06 Hz, mag=5.629475e+00 UIpp --> BER=1.387735e-20 
UVM_INFO @ 224511.000ns: uvm_test_top.E.AGNT.DRV [RUN] 
  | #  1 SJ freq=5.000000e+06 Hz, mag=6.755370e+00 UIpp --> BER=4.093819e-19 
UVM_INFO @ 226712.000ns: uvm_test_top.E.AGNT.DRV [RUN] 
  | #  1 SJ freq=5.000000e+06 Hz, mag=7.881265e+00 UIpp --> BER=1.972978e-15 
UVM_INFO @ 228913.000ns: uvm_test_top.E.AGNT.DRV [RUN] 
  | #  1 SJ freq=5.000000e+06 Hz, mag=9.007160e+00 UIpp --> BER=2.232116e-03 
UVM_INFO @ 231114.000ns: uvm_test_top.E.AGNT.DRV [RUN] 
  | #  1 SJ freq=5.000000e+06 Hz, mag=8.425427e+00 UIpp --> BER=2.148739e-11 
UVM_INFO @ 233315.000ns: uvm_test_top.E.AGNT.DRV [RUN] 
  | #  1 SJ freq=5.000000e+06 Hz, mag=8.148805e+00 UIpp --> BER=8.002244e-15 



 

 

 

 
Figure 13. (a) The scoreboard report listing the maximum tolerable SJ magnitudes and  

(b) the plot of the corresponding JTOL characteristics. 

V. CONCLUSION 
This work demonstrated that the reactive stimulus technique of UVM can be extended to analog/mixed-signal verification, 

using an example of measuring the JTOL characteristics of a high-speed wireline receiver. The proposed UVM testbench 
effectively combines the advantage of UVM and XMODEL, by drawing a clear line between the two using the fixture module. 
The UVM part uses the reactive stimulus technique to find the maximum SJ magnitude meeting the target BER via an iterative 
search algorithm. And the XMODEL part enclosed within the fixture module uses the event-driven analog simulation algorithm 
and statistical simulation algorithm to estimate the BER of the high-speed wireline receiver model in SystemVerilog. As a 
result, the presented UVM testbench was able to measure the 20-point JTOL characteristics in only 41 minutes, while 
performing a total of 106 BER measurements. We are confident that this approach can be extended to other analog/mixed-
signal verification cases as well. 
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-------------------------------------------- 
JITTER TOLERANCE (JTOL) 
INDEX     FREQUENCY(Hz)   MAGNITUDE(UIpp) 
-------------------------------------------- 
1         5.0000e+06      8.1488 
2         7.1922e+06      5.6295 
3         1.0346e+07      4.0418 
4         1.4882e+07      2.8870 
5         2.1407e+07      2.0728 
6         3.0792e+07      1.4806 
7         4.4293e+07      1.0576 
8         6.3714e+07      0.7851 
9         9.1649e+07      0.5858 
10        1.3183e+08      0.4184 
11        1.8963e+08      0.3106 
12        2.7278e+08      0.2709 
13        3.9238e+08      0.2834 
14        5.6442e+08      0.2362 
15        8.1189e+08      0.1894 
16        1.1679e+09      0.2756 
17        1.6799e+09      0.2996 
18        2.4165e+09      0.3168 
19        3.4760e+09      0.2763 
20        5.0000e+09      0.2051 
-------------------------------------------- 
TOTAL NUMBER OF TRIALS: 106 
-------------------------------------------- 


