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Abstract— A UVM testbench capable of verifying the global convergence property of an analog/mixed-signal system 

is presented. For example, a sign-sign LMS adaptation algorithm for a decision-feedback equalizer (DFE) may 

converge to a false final state depending on the initial state. To detect the existence of such false final states, the testbench 

launches a sequence of trial runs, each starting from a random, unvisited initial state, until all possible states of the 

system are tried or traversed, or a problematic initial state is found. The simulation is run entirely in SystemVerilog 

by modeling the analog components of the high-speed wireline transceiver using the XMODEL primitives. To generate 

a sequence of trial runs based on the previous results and evaluate the termination conditions, the testbench utilizes a 

shared state coverage database and a global UVM event. The experimental results show that the testbench swiftly 

uncovers the false final states caused by high channel loss or insufficient constraints, and successfully confirms the 

global convergence of the adaptation loop when no such issues exist.  

Keywords—analog/mixed-signal verification; universal verification methodology (UVM); SystemVerilog; XMODEL; 

global convergence; decision-feedback equalizer (DFE). 

I. INTRODUCTION 

High-speed wireline transceivers are essential building blocks that enable high-bandwidth data communication 

between chips, boards, and systems. They have widespread use in computers, displays, network routers, data centers, 

automobiles, mobile devices, and Internet-of-Thing (IoT) devices. Since the exact characteristics of the 

communication channels are not known at the design time, their equalizers, which are needed to compensate for 

frequency-dependent loss in the channels, are typically made adjustable and often include self-calibrating 

adaptation loops. One key concern for such an adaptive equalizer is, however, whether the loop always converges 

to an optimal setting that can compensate for the channel loss. This paper aims to build a UVM testbench that can 

verify the global convergence property of a digital adaptation controller for a decision-feedback equalizer (DFE) 

of a high-speed wireline receiver. In other words, we aim to compose a testbench that can check if the DFE 

adaptation algorithm can settle to the desired optimally equalized state, starting from an arbitrary initial state. 

Building such a UVM testbench presents several challenges.  The first challenge is the need to simulate analog 

circuits (e.g., the high-speed transceiver circuits including the DFE) alongside digital systems (e.g., the DFE 

adaptation controller) on a platform that supports UVM, which is SystemVerilog. This requires the capability to 

model and simulate analog circuits in SystemVerilog, using methods such as Real-Number Modeling or XMODEL. 

The second challenge is the necessity to test every possible initial state of the DFE and verify their convergence to 

the same equalized state. For a 4-tap DFE, with each tap coefficient having a 6-bit value, a brute-force approach 

would require 224 (16.8 million) trials. To address this, the presented UVM testbench leverages the fact that each 

trial run, starting from a given initial state, traverses through multiple intermediate states before reaching the final 

state. This means that one trial run can verify more than one initial state. To accomplish this, the testbench needs 

to keep the records of all previously visited states and initiate new trials with unvisited states until all possible states 

are marked as visited, or a problematic initial state is found. 

 The rest of the paper is organized as follows. Section II reviews the background of DFE and its sign-sign least-

mean-squares (LMS) adaptation algorithm. Section III describes how these can be modeled in SystemVerilog using 

XMODEL. Section IV presents the UVM testbench that verifies the global convergence property of the adaptive 

DFE. Finally, Section V discusses the experimental results obtained with the UVM testbench, and Section VI 

concludes the paper. 
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Figure 1. A high-speed wireline receiver with an adaptive decision-feedback equalizer (DFE), employing a 

sign-sign LMS adaptation algorithm. 

 

II. SIGN-SIGN LEAST-MEAN-SQUARES (LMS) ADAPTATION FOR DECISION-FEEDBACK EQUALIZERS 

Fig. 1 illustrates the front-end part of a high-speed wireline receiver with a 4-tap adaptive DFE. The receiver 

produces the output data Dout[n] recovered from the incoming signal in by first filtering it with a continuous-time 

linear equalizer (CTLE), second subtracting the expected inter-symbol interference (ISI) caused by the previously-

transmitted data Dout[n-1], Dout[n-2], Dout[n-3], and Dout[n-4], and finally slicing the result [1]. Here, the ISI is 

computed as a weight sum of w1Dout[n-1] + w2Dout[n-2] + w3Dout[n-3] + w4Dout[n-4], where w1, w2, w3, and w4 

are called the tap coefficients of the DFE. To support a wide range of communication channels with diverse 

characteristics, most advanced wireline receivers have the capability of adapting the DFE tap coefficients 

automatically, typically via a simplified form of the least-mean-squares (LMS) algorithm, called the sign-sign 

LMS algorithm [2]. The algorithm updates each tap coefficient value wk using the update formula below: 

 

            (1) 

 

where y[n] is the actual input to the DFE sampled at time n, e[n] is the difference between y[n] and the desired 

input level (=dlevDout[n]), and  is a scaling factor controlling the amount of change made with each observation. 

Basically, the algorithm adjusts the tap coefficients wk's in a direction that can reduce the mean squared value of 

the error e2[n]. To simplify the implementation, the sign-sign LMS algorithm detects only the polarity of the 

change necessary to each wk, by approximating sign(y[n-k]) with Dout[n-k]. 

However, it is this approximation that can cause the global convergence issues. Note that y[n-k] is the input to 

the DFE before the ISI is subtracted, whereas Dout[n-k] is the data decision made on the signal after the ISI is 

subtracted. When the subtracted ISI term is small, the approximation holds well. However, when it is not, the 

adaptation can progress in a wrong direction, leading to a false convergence, i.e., the state that the DFE cannot 

properly recover the correct data. For example, the channel may have significant loss at high frequencies, 

demanding large DFE tap coefficient values. Or, the DFE tap coefficients may start with large values for some 

reason. In these cases, the computed ISI term can become large enough to cause global convergence failures. 
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III. MODELING OF HIGH-SPEED WIRELINE RECEIVER WITH ADAPTIVE DECISION-FEEDBACK EQUALIZER 

Fig. 2 shows the overall block diagram of an example 16-Gb/s high-speed wireline transceiver model, including 

the adaptive DFE and its sign-sign LMS adaptation loop. This model is largely similar to the one presented in [3]. 

On the transmitter side, a charge-pump phase-locked loop (TX-PLL) generates a 16-GHz clock (tx_clk) from a 2-

GHz reference (tx_ref_clk), and a differential current-mode transmitter with 1-tap de-emphasis (TX-EQ) drives the 

input data stream (Din) onto a pair of transmission lines with termination loads. On the receiver side, a continuous-

time linear equalizer stage (RX-CTLE) followed by a 4-tap DFE stage perform equalization on the received signal 

before the data sampler makes decisions to produce the output data (Dout). Additionally, a phase-interpolator-based 

clock-and-data recovery loop (RX-CDR) recovers the clock (rx_clk) that triggers the data and edge samplers, as 

guided by a bang-bang phase detector (PD) and a digital loop filter (LF). 

The analog components of this high-speed wireline transceiver are modeled in SystemVerilog using the 

primitives provided by XMODEL from Scientific Analog [4]. XMODEL introduces a signal type called xreal, 

which expresses a continuously-varying analog signal using an equation rather than a set of sample points. This 

allows XMODEL to perform truly event-driven simulation of analog circuits at fast speeds without sacrificing 

accuracy [5]. XMODEL has extended this event-driven simulation approach even to circuit-level models described 

as a network of circuit elements, including passive (e.g. resistors), active (e.g. transistors), and distributed elements 

(e.g. transmission lines). XMODEL has another signal type called xbit, which expresses digital signals with accurate 

timing, not limited to the SystemVerilog simulator's timestep. 
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Figure 2. The overall block diagram of a high-speed wireline transceiver model with adaptive DFE. 

 

Fig. 3 shows the detailed model of the 4-tap adaptive DFE and its sign-sign LMS adaptation loop in schematic 

form. All the block symbols, except for the green one labeled eq_adapt, are XMODEL primitives, such as add, 

compare, dac, filter_disc_var, and inv_xbit. For example, the compare primitive describes a clocked comparator, 

and filter_disc_var primitive describes a discrete-time filter with variable numerator and denominator coefficients 

in its z-domain transfer function. The other primitives perform the functions suggested by their names. 

The model of this adaptive DFE receiver closely resembles that in Fig. 1, with a difference that it explicitly 

shows the crossings between the analog and digital domains. For the data sampler with DFE, the compare primitive 

converts the sampled analog signal dfe_out to a digital output data and the dac primitive on the feedback path 

converts data back to an analog signal fb_in, so that it can be subtracted from the incoming signal after being filtered 

by the filter_disc_var primitive. On the other hand, the error detector consists of two compare primitives that 

measure the polarity of the error between the equalized signal dfe_out and the desired levels dlev1 and dlev0. The 

sign-sign LMS adaptation is performed by a digital controller named eq_adapt based on the received data and error 

polarity values. The controller produces the desired level and four DFE tap coefficients in 6-bit digital values, which 

are then converted to analog values via a set of dac primitives. 
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Figure 3. The model of the 4-tap adaptive DFE receiver with a sign-sign LMS adaptation loop. 

 

Fig. 4 lists the Verilog code describing the sign-sign LMS adaptation controller (eq_adapt). It basically 

computes Eq. (1) to update the DFE tap coefficient values based on the product of the error polarity and the data. 

The time shift between the error e[n] and data applied before computing the product depends on the tap position. 

For example, w1 is updated based on the product of sign(e[n]) and Dout[n-1] and w4 is updated based on the product 

of sign(e[n]) and Dout[n-4]. On the other hand, the desired level dlev is increased when the error polarity indicates 

that the equalized signal has the larger swing than dlev and vice versa. To avoid excessive dithering at the locked 

states, one update decision is made after accumulating 255 observations. 

The code listed in Fig. 4 also contains additional components that facilitate verification by the UVM testbench 

to be presented shortly. First, it includes a task named init(), which initializes the DFE tap coefficient values and 

resets the internal accumulator states. Second, it triggers a SystemVerilog event named updated when the controller 

makes changes to the DFE tap coefficient values. Using these, the UVM testbench sets a new initial state and 

monitors the progression of the state over time.  
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Figure 4. The Verilog model of the sign-sign LMS adaptation controller for a 4-tap DFE receiver. 

 

 

module eq_adapt ( 

    output reg [5:0] dlev_tap, dfe_tap1, dfe_tap2, dfe_tap3, dfe_tap4, 

    input data, data_err1, data_err0, 

    input clk 

); 

 

reg signed [8:0] acc [0:4]; 

reg [7:0] count; 

reg [1:4] d_buf; 

reg data_err; 

event updated; 

int k; 

 

always @(posedge clk) begin 

    d_buf[1:4] <= {data, d_buf[1:3]}; 

end 

 

always @(posedge clk) begin 

    // sign-sign LMS operation 

    data_err = (data) ? data_err1 : data_err0; 

    acc[0] += ((data) ? data_err1 : ~data_err0) ? +1 : -1; 

    acc[1] += (data_err ^ d_buf[1]) ? -1 : +1; 

    acc[2] += (data_err ^ d_buf[2]) ? -1 : +1; 

    acc[3] += (data_err ^ d_buf[3]) ? -1 : +1; 

    acc[4] += (data_err ^ d_buf[4]) ? -1 : +1; 

    count += 1; 

 

    if (count == 255) begin 

        // update DFE tap coefficients 

        if (acc[0] > 8) dlev_tap <= (dlev_tap < 6'd63) ? dlev_tap + 1 : 6'd63; 

        else if (acc[0] < -8) dlev_tap <= (dlev_tap > 6'd0) ? dlev_tap - 1 : 6'd0; 

        if (acc[1] > 8) dfe_tap1 <= (dfe_tap1 < 6'd63) ? dfe_tap1 + 1 : 6'd63; 

        else if (acc[1] < -8) dfe_tap1 <= (dfe_tap1 > 6'd0) ? dfe_tap1 - 1 : 6'd0; 

        if (acc[2] > 8) dfe_tap2 <= (dfe_tap2 < 6'd63) ? dfe_tap2 + 1 : 6'd63; 

        else if (acc[2] < -8) dfe_tap2 <= (dfe_tap2 > 6'd0) ? dfe_tap2 - 1 : 6'd0; 

        if (acc[3] > 8) dfe_tap3 <= (dfe_tap3 < 6'd63) ? dfe_tap3 + 1 : 6'd63; 

        else if (acc[3] < -8) dfe_tap3 <= (dfe_tap3 > 6'd0) ? dfe_tap3 - 1 : 6'd0; 

        if (acc[4] > 8) dfe_tap4 <= (dfe_tap4 < 6'd63) ? dfe_tap4 + 1 : 6'd63; 

        else if (acc[4] < -8) dfe_tap4 <= (dfe_tap4 > 6'd0) ? dfe_tap4 - 1 : 6'd0; 

 

        for (k=0; k<=4; k++) acc[k] = 0; 

        count = 0; 

 

        // flag that the DFE tap coefficients are updated 

        -> updated; 

    end 

end 

 

// task that sets the initial values of the DFE tap coefficients 

task init( 

    input [5:0] init_dlev, init_dfe1, init_dfe2, init_dfe3, init_dfe4 

); 

    dlev_tap = init_dlev; 

    dfe_tap1 = init_dfe1;  dfe_tap2 = init_dfe2; 

    dfe_tap3 = init_dfe3;  dfe_tap4 = init_dfe4; 

 

    d_buf = 0; 

    for (k=0; k<=4; k++) acc[k] = 0; 

    count = 0; 

endtask 

 

endmodule 
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IV. UVM TESTBENCH VERIFYING THE GLOBAL CONVERGENCE OF DFE ADAPTATION 

The objective is to verify that the DFE tap coefficients consistently converge to the same values through the 

sign-sign LMS adaptation loop regardless of their initial values. To achieve this, the testbench needs to launch a 

series of trial runs, each starting from a different initial state—that is, a different set of DFE tap coefficient values—

and check if they all converge to the same final state, i.e., the same set of tap coefficient values. During each trial 

run, if the adaptation loop traverses through intermediate states before reaching the final state, each of those 

intermediate states can be considered as a valid initial state leading to the same final state. Furthermore, some trial 

runs can be stopped early when they reach a state whose final state has already been verified. The verification 

concludes when all possible initial states have been visited or when a problematic initial state leading to a different 

final state is identified.  

Fig. 5 illustrates the organization of the proposed UVM testbench to verify the global convergence property of 

the adaptive DFE. Following the approach described in [6],[7], all the analog-specific details are encapsulated 

within a fixture module, allowing the rest of the testbench to be built using standard UVM components. In this 

particular case, the stimuli and responses of the device-under-test (DUT) enclosed by the fixture module are all 

digital. Specifically, the sequencer and driver components provide the fixture module with the next initial tap 

coefficient values to try, and the monitor component observes the tap coefficient values traversed by the adaptation 

loop and checks if they have converged to their final values. 

While one method for the sequencer component to choose a next initial state that has not been tried or traversed 

is to use a reactive stimulus technique [3],[8], it was not straightforward to implement it in this particular case 

because a single stimulus can generate multiple responses. Instead, a common database containing the state 

coverage information is shared among the sequencer, monitor, and scoreboard components via the UVM 

configuration database (uvm_config_db). In this approach, the monitor component updates this coverage database 

with the observed state values, and the sequencer component selects the next initial state by querying it. Furthermore, 

when the monitor component determines that a trial run has reached a new final state or one of the previously 

verified states with a known final state, it triggers a UVM event named LOCKED, which is stored in the global 

uvm_event_pool. This event allows the sequencer component to initiate a new trial run. 

The following subsections provide detailed descriptions of each component within this UVM testbench. 
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Figure 5. Conceptual diagram of the UVM testbench performing the global convergence checks on the 

adaptive decision-feedback equalizer (DFE) of a high-speed wireline receiver.  
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A. Coverage Database 

Fig. 6 presents the code defining a class named COVERAGE, maintaining a list of previously traversed states 

and their corresponding final states using two member variables: visited and locks. First, visited is a SystemVerilog 

associative array mapping each 24-bit state value, comprising four 6-bit tap coefficient values, to an integer-valued 

index of its final state, with valid values starting from 1. States not stored in visited have default mapped values 

of 0 and are considered not visited yet. On the other hand, locks is a SystemVerilog queue keeping the list of final 

states discovered so far. Therefore, the goal of this UVM testbench is to populate visited with all possible initial 

states and verify that only one final state is registered in locks. The COVERAGE class also includes additional 

member variables such as num_trials, which tracks the number of trial runs executed so far, and size_full, defining 

the size of the array visited when it is full. 

The COVERAGE class also defines a set of member functions, such as new(), check_constraint(), and 

calc_coeff(), to handle cases where the initial state space needs to be constrained. During the construction of a 

new instance, the visited array is populated with the states for which the check_constraint() function returns 0, 

with these states mapped to a value of -1.  The calc_coeff() function helps define the state-excluding conditions 

within the check_constraint() function by converting the digital tap coefficient value to analog. For example, the 

check_constraint() function listed in Fig. 6 constrains the initial state space to the tap coefficient values satisfying 

|w1|+|w2|+|w3|+|w4|  0.05, |w1| > |w2| > |w3|, and |w2| > |w4|, which occupies only 0.014% of the total state space. 

An instance of the COVERAGE class named CVG is created within the top-level module UVM_TB and shared 

globally with the UVM components, using the uvm_config_db::set() and uvm_config_db::get() methods. The 

UVM_TB module calls uvm_config_db::set() to register the handle to the CVG instance in the UVM configuration 

database, and each UVM component calls the uvm_config_db::get() to retrieve it and access the CVG instance's 

contents. 

 

 

Figure 6. The coverage database class for maintaining a list of traversed states and their corresponding 

final states.  

`define SIZE_STATE   24 

 

typedef bit [`SIZE_STATE-1:0] DATA_t; 

typedef virtual IF_t VIF_t; 

 

class COVERAGE; 

    shortint visited[DATA_t]; 

    DATA_t locks[$]; 

    int num_trials = 0; 

    int size_full = (1 << `SIZE_STATE); 

 

    function new(); 

        DATA_t v = 0; 

        for (int i=0; i<size_full; i++) begin 

            if (!check_constraint(v)) visited[v] = -1; 

            v++; 

        end 

    endfunction: new 

 

    function int check_constraint(DATA_t value); 

        real c1 = calc_coeff(value[23:18]); 

        real c2 = calc_coeff(value[17:12]); 

        real c3 = calc_coeff(value[11:6]); 

        real c4 = calc_coeff(value[5:0]); 

        return (`fabs(c1) + `fabs(c2) + `fabs(c3) + `fabs(c4) <= 0.05 && 

                `fabs(c1) > `fabs(c2) && `fabs(c2) > `fabs(c3) && `fabs(c2) > `fabs(c4)); 

    endfunction: check_constraint 

 

    function real calc_coeff(bit [5:0] v); 

        real scale = 0.1; 

        return scale * (v*2.0/63 - 1.0); 

    endfunction: calc_coeff 

endclass: COVERAGE 
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B. Sequencer and Driver Components 

Fig. 7 lists the code of the sequencer and driver components that launches a sequence of trial runs. The sequencer 

randomly selects the next initial tap coefficient values that have not been tried or traversed by finding the state value 

not registered in the coverage database (CVG) using the constrained randomization solver of SystemVerilog. The 

driver then feeds this value to the fixture module via the driver-side interface bus (VDIF) and initiates a new trial 

run by triggering its member event named TRIG. Each trial run concludes when the monitor component finds that 

a termination condition is met and triggers the global UVM event named LOCKED. The sequencer keeps launching 

new trial runs until the CVG.visited array is full or the CVG.locks queue has more than one entry. 
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Figure 7. The sequencer and driver components launching a sequence of trial runs with randomly 

selected initial tap coefficient values. 

class PACKET extends uvm_sequence_item; 

    `uvm_object_utils(PACKET) 

 

    rand DATA_t DATA; 

    COVERAGE CVG; 

 

    constraint EXCLUDE_con { !CVG.visited.exists(DATA); } 

    ... 

endclass: PACKET 
 
 
class SEQ_EQADAPT extends uvm_sequence #(PACKET); 

    `uvm_object_utils(SEQ_EQADAPT) 

 

    COVERAGE CVG; 

    PACKET PKT; 

    DATA_t init_state; 

 

    task body(); 

        void'(uvm_config_db #(COVERAGE)::get(null, "uvm_test_top", "Key_CVG", CVG)); 

        PKT = PACKET::type_id::create("PKT"); 

        PKT.CVG = CVG; 

        while (CVG.visited.size() < CVG.size_full && CVG.locks.size() <= 1) begin: LOOP 

            start_item(PKT); 

            if (CVG.num_trials == 0) PKT.DATA = init_state; 

            else void'(PKT.randomize()); 

            CVG.num_trials++; 

            finish_item(PKT); 

        end: LOOP 

    endtask: body 

    ... 

endclass: SEQ_EQADAPT 
 
 
class DRIVER extends uvm_driver #(PACKET); 

    `uvm_component_utils(DRIVER) 

 

    VIF_t VDIF; 

    uvm_event LOCKED; 

    PACKET PKT; 

    ... 

 

    function void build_phase(uvm_phase phase); 

        void'(uvm_config_db #(VIF_t)::get(null, "uvm_test_top", "Key_VDIF", VDIF)); 

    endfunction: build_phase 

 

    task run_phase(uvm_phase phase); 

        LOCKED = uvm_event_pool::get_global("LOCKED"); 

        wait(!VDIF.RST); 

        forever begin: LOOP 

            // apply a new initial state 

            seq_item_port.get_next_item(PKT); 

            VDIF.DATA = PKT.DATA; 

            -> VDIF.TRIG; 

            `uvm_info("DRV", $sformatf("\n  | DRV #%0d: trying new initial state: %b", PKT.CVG.num_trials, 

VDIF.DATA), UVM_HIGH); 

 

            // wait until a lock is reached 

            LOCKED.wait_trigger(); 

            #(1ns); 

            seq_item_port.item_done(); 

        end: LOOP 

    endtask: run_phase 

endclass: DRIVER 



 

10 

 

C. Fixture Module 

The fixture module, shown in Fig. 8, instantiates the model of the high-speed wireline transceiver described in 

Section III, including the 4-tap DFE and its sign-sign LMS adaptation controller. It also includes the necessary 

instrumentations to apply new initial tap coefficient values to the adaptation controller and observe the tap 

coefficient values being traversed by the adaptation controller afterwards. 

Specifically, when the TRIG event of the driver-side interface bus (DIF) is triggered, the fixture module calls 

the init() task of the eq_adapt module instance to set its tap coefficients to the values provided by the sequencer 

component (DIF.DATA). Additionally, when the updated event of the eq_adapt module instance is triggered, 

indicating a change in the tap coefficient values, the fixture module forwards the values to the monitor component 

via the monitor-side interface bus (MIF) and triggers its TRIG event. 

 

 

Figure 8. The fixture module instantiating the high-speed wireline transceiver model and facilitating the 

trial runs by setting new initial tap coefficient values and observing their traversal afterwards. 

 

  

`define DUT_EQADAPT      DUT.IRXCDR.IRXEQ.IEQADAPT 

 

interface IF_t (input bit RST); 

    DATA_t DATA; 

    event TRIG; 

endinterface: IF_t 

 

module FIXTURE (IF_t DIF, IF_t MIF); 

    parameter real data_freq = 16.0e9;      // data rate 

    parameter real ref_freq = 2.0e9;        // RX reference clock frequency 

    parameter real ref_RJ = 1e-12;          // RX reference clock jitter 

 

    xbit ref_txclk, ref_rxclk, tx_clk, rx_clk; 

    xbit Din, Dout, Dout_os; 

    xreal delay_txclk, vdd; 

    bit [5:0] init_dfe1, init_dfe2, init_dfe3, init_dfe4; 

 

    // DUT instantiation 

    hslink          #(.channel_noise(0.001), .rx_noise(0.001)) 

                    DUT (.ref_txclk, .ref_rxclk, .tx_clk, .rx_clk, .Din, .Dout, .Dout_os, .delay_txclk, .vdd); 

 

    // clock, data, and supply sources 

    clk_gen         #(.freq(ref_freq), .RJ_rms(ref_RJ)) U1 (ref_txclk); 

    clk_gen         #(.freq(ref_freq), .RJ_rms(ref_RJ)) U2 (ref_rxclk); 

    prbs_gen        #(.length(15)) U3 (.trig(tx_clk), .out(Din)); 

    dc_gen          #(.value(0.0)) U4 (delay_txclk); 

    dc_gen          #(.value(1.2)) U5 (vdd); 

 

    // interfaces with driver & monitor 

    always @(DIF.TRIG) begin 

        // initialize DFE coefficients 

        {init_dfe1, init_dfe2, init_dfe3, init_dfe4} = DIF.DATA; 

        `DUT_EQADAPT.init( 

            .init_dlev(6'b010110),  // NOTE: fixing dlev at 6'b010110 

            .init_dfe1(init_dfe1), .init_dfe2(init_dfe2), .init_dfe3(init_dfe3), .init_dfe4(init_dfe4) 

        ); 

    end 

 

    always @(`DUT_EQADAPT.updated) begin 

        MIF.DATA = {`DUT_EQADAPT.dfe_tap1, `DUT_EQADAPT.dfe_tap2, `DUT_EQADAPT.dfe_tap3, `DUT_EQADAPT.dfe_tap4}; 

        -> MIF.TRIG; 

    end 
 
endmodule: FIXTURE 
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D. Monitor Component 

The monitor component in Fig. 9 plays an important role in this UVM testbench by collecting a trace of the tap 

coefficient values traversed by the adaptation controller and updating the coverage database when one of the 

termination conditions is met. Specifically, the monitor continues collecting the trace until either a new final locked 

state is reached or a previously-visited state is revisited. Depending on which termination condition occurs, the 

monitor records the states included in the trace in the coverage database with a new final state or an existing final 

state, respectively. Note that the determination of whether the adaptation controller has reached a final locked state 

is based on checking if the controller revisits a state that was recorded in the trace of the current trial run 8 or more 

update cycles earlier. 

 

Figure 9. The monitor component observing the tap coefficient values traversed by the adaptation 

controller and updating the coverage database depending on whether a new final locked state is reached 

or a previously-visited state is revisited. 

class MONITOR extends uvm_monitor; 

    `uvm_component_utils(MONITOR) 

 

    VIF_t VMIF; 

    COVERAGE CVG; 

    uvm_event LOCKED; 

    ... 

    function void build_phase(uvm_phase phase); 

        void'(uvm_config_db #(VIF_t)::get(null, "uvm_test_top", "Key_VMIF", VMIF)); 

        void'(uvm_config_db #(COVERAGE)::get(null, "uvm_test_top", "Key_CVG", CVG)); 

    endfunction: build_phase 

 

    task run_phase(uvm_phase phase); 

        DATA_t queue[$]; 

        shortint index_lock; 

        int result[$]; 

        LOCKED = uvm_event_pool::get_global("LOCKED"); 

        wait(!VMIF.RST); 

        forever begin:LOOP 

            @(VMIF.TRIG); 

 

            // collect a trace of states until a lock is reached 

            if (CVG.visited.exists(VMIF.DATA) && CVG.visited[VMIF.DATA] > 0) 

                index_lock = CVG.visited[VMIF.DATA]; 

            else begin 

                result = queue.find_first_index with (item == VMIF.DATA); 

                if (result.size() != 0 && result[0] < queue.size() - 8) 

                    index_lock = -1; 

                else begin 

                    queue.push_back(VMIF.DATA); 

                    index_lock = 0; 

                end 

            end 

 

            // put the trace into the coverage database 

            if (index_lock != 0) begin 

                if (index_lock < 0) begin 

                    CVG.locks.push_back(queue[$]); 

                    index_lock = CVG.locks.size(); 

                end 

                `uvm_info("MON", $sformatf("\n  | MON #%0d: reaching %b (final state #%0d: %b)", CVG.num_trials, 

queue[$], index_lock, CVG.locks[index_lock-1]), UVM_HIGH); 

                foreach (queue[i]) CVG.visited[queue[i]] = index_lock; 

                queue.delete(); 

 

                // trigger LOCKED to initiate a new search 

                LOCKED.trigger(); 

            end 

        end: LOOP 

    endtask: run_phase 

endclass: MONITOR 
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E. Scoreboard Component 

The scoreboard component in this UVM testbench simply reports the pass/fail result after the sequence of trial 

runs is completed. As the code listed in Fig. 10 shows, it determines whether the global convergence property of 

the sign-sign LMS adaptation controller is verified as true or false, based on the number of final locked states 

registered in the locks queue of the coverage database (CVG.locks). If CVG.locks has only one entry, it implies that 

the adaptation consistently converges to the same final state for all possible initial states. Otherwise, if CVG.locks 

has multiple entries, it suggests that there are some initial states that lead to different final states than others, which 

requires further examination. 

 
Figure 10. The scoreboard component reporting the pass/fail result of the simulation. 

V. EXPERIMENTAL RESULTS 

This section discusses the simulation results obtained using the presented UVM testbench to check the global 

convergence property of the sign-sign LMS adaptation controller for the 4-tap DFE of the 16-Gb/s high-speed 

wireline transceiver model described in Section III. The simulations are run with Cadence Xcelium and Scientific 

Analog's XMODEL, and the reported runtimes are measured on a 64-bit Linux machine with 2.3-GHz 4-core Intel 

Core i7 processor and 8-GB of memory. The following subsections present the results with multiple scenarios: the 

case with high channel loss, the case with unconstrained tap coefficients, and the case with constrained tap 

coefficients. Based on the discussions in Section II, the sign-sign LMS adaptation loop is expected to encounter 

difficulties with global convergence when the tap coefficient values become large, either due to high channel loss 

or unconstrained initialization. 

A. Case with High Channel Loss 

First, the simulation is run with a channel having very high loss, such as a -45dB loss at the Nyquist rate of 

8GHz. Fig. 11 shows the simulation log generated by the UVM testbench. After running 7 trials with randomized 

initial tap coefficient values, the testbench identified two final locked states that the DFE adaptation loop could 

converge to. Since the simulation was aborted as soon as the second locked state was found, the total runtime was 

only 85 seconds. 

class SCOREBOARD extends uvm_scoreboard; 

    `uvm_component_utils(SCOREBOARD) 

 

    COVERAGE CVG; 

    uvm_event LOCKED; 

    ... 

 

    function void build_phase(uvm_phase phase); 

        void'(uvm_config_db #(COVERAGE)::get(null, "uvm_test_top", "Key_CVG", CVG)); 

    endfunction: build_phase 

 

    function void report_phase(uvm_phase phase); 

        if (CVG.locks.size() == 1) begin 

            `uvm_info("SCB", "\n  | SCB: [PASS] all tested initial states lead to the same locked state.", UVM_HIGH); 

        end 

        else begin 

            if (CVG.locks.size() >= 2) begin 

                `uvm_info("SCB", $sformatf("\n  | SCB: [FAIL] more than one locked states are found:\n    #1: %b\n    

#2: %b\n", CVG.locks[0], CVG.locks[1]), UVM_HIGH); 

            end 

            else begin 

                `uvm_info("SCB", "\n  | SCB: [FAIL] no locked state is found.", UVM_HIGH); 

            end 

        end 

        `uvm_info("SCB", $sformatf("\n  | SCB: number of trials = %0d, final coverage = %g (%0d/%0d)", 

CVG.num_trials, real'(CVG.visited.size())/CVG.size_full, CVG.visited.size(), CVG.size_full), UVM_HIGH); 

    endfunction: report_phase 

 

endclass: SCOREBOARD 
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Figure 11. The UVM simulation log reporting a global convergence failure when the channel has a high 

loss of -45-dB at 8GHz.  

 

DFE Tap 1

DFE Tap 2

DFE Tap 3

DFE Tap 4

(a)

(b) (c)
 

Figure 12. (a) The trajectories of the DFE tap coefficient values during the simulation with a -45dB 

channel loss; (b) the equalized eye diagram at the first locked state, and (c) the equalized eye diagram at 

the second locked state.  

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 500.000ns: uvm_test_top.E.AGNTD.DRV [DRV] 

  | DRV #1: trying new initial state: 100000100000100000100000 

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 1137.467ns: uvm_test_top.E.AGNTM.MON [MON] 

  | MON #1: reaching 100111100100100001100000 (final state #1: 100111100100100001100000) 

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 1138.467ns: uvm_test_top.E.AGNTD.DRV [DRV] 

  | DRV #2: trying new initial state: 011001011010100001011110 

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 1823.684ns: uvm_test_top.E.AGNTM.MON [MON] 

  | MON #2: reaching 101001100110100010100000 (final state #1: 100111100100100001100000) 

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 1824.684ns: uvm_test_top.E.AGNTD.DRV [DRV] 

  | DRV #3: trying new initial state: 100111100101100000011110 

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 2159.451ns: uvm_test_top.E.AGNTM.MON [MON] 

  | MON #3: reaching 101010100111100010100000 (final state #1: 100111100100100001100000) 

  ... 

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 3071.904ns: uvm_test_top.E.AGNTD.DRV [DRV] 

  | DRV #7: trying new initial state: 011010011100100010011110 

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 3422.325ns: uvm_test_top.E.AGNTM.MON [MON] 

  | MON #7: reaching 010111011010100000011100 (final state #2: 010111011010100000011100) 

 

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/SCB_PKG.sv(45) @ 3423.325ns: uvm_test_top.E.SCB [SCB] 

  | SCB: [FAIL] more than one locked states are found: 

    #1: 100111100100100001100000 

    #2: 010111011010100000011100 

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/SCB_PKG.sv(51) @ 3423.325ns: uvm_test_top.E.SCB [SCB] 

  | SCB: number of trials = 7, final coverage = 0.999862 (16774909/16777216) 
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Fig. 12(a) plots the trajectories of the DFE tap coefficient values traversed during the entire simulation. The 

time points where the tap coefficient values have abrupt changes indicate when the testbench initiates a new trial 

run with a newly generated set of tap coefficient values. Fig. 12(b) and 12(c) show the equalized eye diagrams 

using the two sets of tap coefficients identified by the simulation. The first set seems adequate, although the eye 

opening is still small due to the high uncompensated loss of the channel. The second set clearly represents a false 

locked state, yielding no eye opening at all. In this second set, the tap coefficients have relatively large values: 

w1=010111 (-27mV), w2=011010 (-17mV), w3=100000 (1.6mV), and w4=011100 (-11mV). These values cause the 

DFE receiver to produce an alternating data pattern of 10101010 regardless of the actual input to the receiver. 

 

B. Case with Unconstrained Tap Coefficients 

Next, the simulation is run with a channel exhibiting a moderate loss of -20-dB at 8GHz and no constraints on 

the tap coefficient values, other than the minimum and maximum bounds of -0.1 and +0.1V, respectively. Fig. 13 

shows the simulation log generated by the UVM testbench for this case. After running just 6 trials in 25 seconds, 

the testbench identified two final locked states that the DFE adaptation loop could converge to. 

Fig. 14(a) plots the trajectories of the DFE tap coefficient values traversed during the entire simulation. And 

Fig. 14(b) and 14(c) show the equalized eye diagrams using the two sets of tap coefficients identified by the 

simulation. The first set is clearly the desired one, yielding a wide eye opening of 58mVpp,diff. In contrast, the second 

set produces a very strange-looking eye diagram. Similar to the case with the high-loss channel, the DFE tap 

coefficients have large values that can force the decision solely based on the previous outputs, regardless of the 

current input. The DFE receiver in this case also produces an alternating data pattern of 10101010. 

 

 

Figure 13. The UVM simulation log reporting a global convergence failure when the initial tap coefficient 

space is not constrained.  

 

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 500.000ns: uvm_test_top.E.AGNTD.DRV [DRV] 

  | DRV #1: trying new initial state: 100000100000100000100000 

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 818.731ns: uvm_test_top.E.AGNTM.MON [MON] 

  | MON #1: reaching 100110011111100010011111 (final state #1: 100110011111100010011111) 

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 819.731ns: uvm_test_top.E.AGNTD.DRV [DRV] 

  | DRV #2: trying new initial state: 011010010010111110011101 

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 1361.606ns: uvm_test_top.E.AGNTM.MON [MON] 

  | MON #2: reaching 100110100000100011100000 (final state #1: 100110011111100010011111) 

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 1362.606ns: uvm_test_top.E.AGNTD.DRV [DRV] 

  | DRV #3: trying new initial state: 000011010001011111111000 

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 1952.230ns: uvm_test_top.E.AGNTM.MON [MON] 

  | MON #3: reaching 100001100001100001100001 (final state #1: 100110011111100010011111) 

  ... 

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 3580.856ns: uvm_test_top.E.AGNTD.DRV [DRV] 

  | DRV #6: trying new initial state: 111001001000101011001011 

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 3883.683ns: uvm_test_top.E.AGNTM.MON [MON] 

| MON #6: reaching 101111010010100001010101 (final state #2: 101111010010100001010101) 

 

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/SCB_PKG.sv(45) @ 3884.683ns: uvm_test_top.E.SCB [SCB] 

  | SCB: [FAIL] more than one locked states are found: 

    #1: 100110011111100010011111 

    #2: 101111010010100001010101 

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/SCB_PKG.sv(51) @ 3884.683ns: uvm_test_top.E.SCB [SCB] 

  | SCB: number of trials = 6, final coverage = 1.15037e-05 (193/16777216) 
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Figure 14. (a) The trajectories of the DFE tap coefficient values during the simulation when the state 

space is unconstrained; (b) the equalized eye diagram at the first locked state, and (c) the equalized eye 

diagram at the second locked state.  

 

C. Case with Constrained Tap Coefficients 

Finally, the simulation is run with the moderate-loss channel and the constraints discussed in Section IV-A, 

namely, |w1|+|w2|+|w3|+|w4|  0.05, |w1| > |w2| > |w3|, and |w2| > |w4|. These constraints exclude the problematic initial 

states identified in the previous subsection and make the simulation feasible by reducing the state space.  

The simulation log shown in Fig. 15 reports a successful global convergence after running 1,721 trials for 5 

hours and 12 minutes. The simulation verified a total of 2,347 states, achieving an effective 26.7% reduction in the 

number of trial runs required. Further improvement may be possible by adding more guidance to the random 

selection of the next initial state, so that each trial run can traverse as many intermediate states as possible. 
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Figure 15. The UVM simulation log reporting a successful global convergence success when the initial tap 

coefficient space is constrained with |w1|+|w2|+|w3|+|w4|  0.05, |w1| > |w2| > |w3|, and |w2| > |w4|.  

VI. CONCLUSION 

This work demonstrated that the power of UVM can be harnessed to verify the global convergence property of 

analog/mixed-signal systems. Specifically, it presented a UVM testbench capable of checking whether a sign-sign 

LMS adaptation controller for a high-speed wireline DFE receiver can reach the desired equalized state regardless 

of its initial state conditions. To achieve this, the proposed testbench launches a sequence of trial runs with different 

initial states with an objective of exploring all possible states in the system. Thus, the proposed testbench generates 

a reactive stimulus, but its stimulus-response pattern does not conform to the standard UVM framework described 

in [8]. Instead, the testbench utilizes a state coverage database shared via the UVM configuration database and a 

UVM event maintained by the global event pool. Further directions may include improving the efficiency of state 

exploration and verifying the global convergence property of other analog/mixed-signal systems as well. 
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UVM_INFO /PATH/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 500.000ns: uvm_test_top.E.AGNTD.DRV [DRV] 

  | DRV #1: trying new initial state: 100000100000100000100000 

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 882.482ns: uvm_test_top.E.AGNTM.MON [MON] 

  | MON #1: reaching 100100100000100001100001 (final state #1: 100100100000100001100001) 

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 883.482ns: uvm_test_top.E.AGNTD.DRV [DRV] 

  | DRV #2: trying new initial state: 011001011010100001011110 

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 1074.667ns: uvm_test_top.E.AGNTM.MON [MON] 

  | MON #2: reaching 100011100001100010100000 (final state #1: 100100100000100001100001) 

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 1075.667ns: uvm_test_top.E.AGNTD.DRV [DRV] 

  | DRV #3: trying new initial state: 100111100100011111100000 

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 1155.357ns: uvm_test_top.E.AGNTM.MON [MON] 

  | MON #3: reaching 100110100001100001100001 (final state #1: 100100100000100001100001) 

  ... 
UVM_INFO /users/jaeha/projects/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 83992.481ns: uvm_test_top.E.AGNTD.DRV [DRV] 

  | DRV #1721: trying new initial state: 100101011011011110011100 

UVM_INFO /users/jaeha/projects/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 84024.354ns: uvm_test_top.E.AGNTM.MON [MON] 

  | MON #1721: reaching 100101011011011110011100 (final state #1: 100100100000100001100001) 

 

UVM_INFO /users/jaeha/projects/UVM_eqadapt/uvm_tb/SCB_PKG.sv(41) @ 84025.354ns: uvm_test_top.E.SCB [SCB] 

  | SCB: [PASS] all tested initial states lead to the same locked state. 

UVM_INFO /users/jaeha/projects/UVM_eqadapt/uvm_tb/SCB_PKG.sv(51) @ 84025.354ns: uvm_test_top.E.SCB [SCB] 

  | SCB: number of trials = 1721, final coverage = 1.0 (16777216/16777216) 


