

1

A UVM Testbench for Checking the Global

Convergence of Analog/Mixed-Signal Systems:

An Adaptive Decision-Feedback Equalizer Example

Jaeha Kim, Seoul National University, Seoul, Korea (jaeha@snu.ac.kr)

Abstract— A UVM testbench capable of verifying the global convergence property of an analog/mixed-signal system

is presented. For example, a sign-sign LMS adaptation algorithm for a decision-feedback equalizer (DFE) may

converge to a false final state depending on the initial state. To detect the existence of such false final states, the testbench

launches a sequence of trial runs, each starting from a random, unvisited initial state, until all possible states of the

system are tried or traversed, or a problematic initial state is found. The simulation is run entirely in SystemVerilog

by modeling the analog components of the high-speed wireline transceiver using the XMODEL primitives. To generate

a sequence of trial runs based on the previous results and evaluate the termination conditions, the testbench utilizes a

shared state coverage database and a global UVM event. The experimental results show that the testbench swiftly

uncovers the false final states caused by high channel loss or insufficient constraints, and successfully confirms the

global convergence of the adaptation loop when no such issues exist.

Keywords—analog/mixed-signal verification; universal verification methodology (UVM); SystemVerilog; XMODEL;

global convergence; decision-feedback equalizer (DFE).

I. INTRODUCTION

High-speed wireline transceivers are essential building blocks that enable high-bandwidth data communication

between chips, boards, and systems. They have widespread use in computers, displays, network routers, data centers,

automobiles, mobile devices, and Internet-of-Thing (IoT) devices. Since the exact characteristics of the

communication channels are not known at the design time, their equalizers, which are needed to compensate for

frequency-dependent loss in the channels, are typically made adjustable and often include self-calibrating

adaptation loops. One key concern for such an adaptive equalizer is, however, whether the loop always converges

to an optimal setting that can compensate for the channel loss. This paper aims to build a UVM testbench that can

verify the global convergence property of a digital adaptation controller for a decision-feedback equalizer (DFE)

of a high-speed wireline receiver. In other words, we aim to compose a testbench that can check if the DFE

adaptation algorithm can settle to the desired optimally equalized state, starting from an arbitrary initial state.

Building such a UVM testbench presents several challenges. The first challenge is the need to simulate analog

circuits (e.g., the high-speed transceiver circuits including the DFE) alongside digital systems (e.g., the DFE

adaptation controller) on a platform that supports UVM, which is SystemVerilog. This requires the capability to

model and simulate analog circuits in SystemVerilog, using methods such as Real-Number Modeling or XMODEL.

The second challenge is the necessity to test every possible initial state of the DFE and verify their convergence to

the same equalized state. For a 4-tap DFE, with each tap coefficient having a 6-bit value, a brute-force approach

would require 224 (16.8 million) trials. To address this, the presented UVM testbench leverages the fact that each

trial run, starting from a given initial state, traverses through multiple intermediate states before reaching the final

state. This means that one trial run can verify more than one initial state. To accomplish this, the testbench needs

to keep the records of all previously visited states and initiate new trials with unvisited states until all possible states

are marked as visited, or a problematic initial state is found.

 The rest of the paper is organized as follows. Section II reviews the background of DFE and its sign-sign least-

mean-squares (LMS) adaptation algorithm. Section III describes how these can be modeled in SystemVerilog using

XMODEL. Section IV presents the UVM testbench that verifies the global convergence property of the adaptive

DFE. Finally, Section V discusses the experimental results obtained with the UVM testbench, and Section VI

concludes the paper.

mailto:jaeha@snu.ac.kr

2

FF FF

w1 w2 w3

dlev1

dlev0

0

CTLE

clk

clk

clk

clk clk

Sign-Sign LMS

Digital Adaptation

Controller

err1

err0

Dout

dlev1,dlev0

w1,w2,

w3,w4

Decision Feedback Equalizer (DFE)

From TX
in

FF

w4

clk

y in_eq

Figure 1. A high-speed wireline receiver with an adaptive decision-feedback equalizer (DFE), employing a

sign-sign LMS adaptation algorithm.

II. SIGN-SIGN LEAST-MEAN-SQUARES (LMS) ADAPTATION FOR DECISION-FEEDBACK EQUALIZERS

Fig. 1 illustrates the front-end part of a high-speed wireline receiver with a 4-tap adaptive DFE. The receiver

produces the output data Dout[n] recovered from the incoming signal in by first filtering it with a continuous-time

linear equalizer (CTLE), second subtracting the expected inter-symbol interference (ISI) caused by the previously-

transmitted data Dout[n-1], Dout[n-2], Dout[n-3], and Dout[n-4], and finally slicing the result [1]. Here, the ISI is

computed as a weight sum of w1Dout[n-1] + w2Dout[n-2] + w3Dout[n-3] + w4Dout[n-4], where w1, w2, w3, and w4

are called the tap coefficients of the DFE. To support a wide range of communication channels with diverse

characteristics, most advanced wireline receivers have the capability of adapting the DFE tap coefficients

automatically, typically via a simplified form of the least-mean-squares (LMS) algorithm, called the sign-sign

LMS algorithm [2]. The algorithm updates each tap coefficient value wk using the update formula below:

 (1)

where y[n] is the actual input to the DFE sampled at time n, e[n] is the difference between y[n] and the desired

input level (=dlevDout[n]), and  is a scaling factor controlling the amount of change made with each observation.

Basically, the algorithm adjusts the tap coefficients wk's in a direction that can reduce the mean squared value of

the error e2[n]. To simplify the implementation, the sign-sign LMS algorithm detects only the polarity of the

change necessary to each wk, by approximating sign(y[n-k]) with Dout[n-k].

However, it is this approximation that can cause the global convergence issues. Note that y[n-k] is the input to

the DFE before the ISI is subtracted, whereas Dout[n-k] is the data decision made on the signal after the ISI is

subtracted. When the subtracted ISI term is small, the approximation holds well. However, when it is not, the

adaptation can progress in a wrong direction, leading to a false convergence, i.e., the state that the DFE cannot

properly recover the correct data. For example, the channel may have significant loss at high frequencies,

demanding large DFE tap coefficient values. Or, the DFE tap coefficients may start with large values for some

reason. In these cases, the computed ISI term can become large enough to cause global convergence failures.

3

III. MODELING OF HIGH-SPEED WIRELINE RECEIVER WITH ADAPTIVE DECISION-FEEDBACK EQUALIZER

Fig. 2 shows the overall block diagram of an example 16-Gb/s high-speed wireline transceiver model, including

the adaptive DFE and its sign-sign LMS adaptation loop. This model is largely similar to the one presented in [3].

On the transmitter side, a charge-pump phase-locked loop (TX-PLL) generates a 16-GHz clock (tx_clk) from a 2-

GHz reference (tx_ref_clk), and a differential current-mode transmitter with 1-tap de-emphasis (TX-EQ) drives the

input data stream (Din) onto a pair of transmission lines with termination loads. On the receiver side, a continuous-

time linear equalizer stage (RX-CTLE) followed by a 4-tap DFE stage perform equalization on the received signal

before the data sampler makes decisions to produce the output data (Dout). Additionally, a phase-interpolator-based

clock-and-data recovery loop (RX-CDR) recovers the clock (rx_clk) that triggers the data and edge samplers, as

guided by a bang-bang phase detector (PD) and a digital loop filter (LF).

The analog components of this high-speed wireline transceiver are modeled in SystemVerilog using the

primitives provided by XMODEL from Scientific Analog [4]. XMODEL introduces a signal type called xreal,

which expresses a continuously-varying analog signal using an equation rather than a set of sample points. This

allows XMODEL to perform truly event-driven simulation of analog circuits at fast speeds without sacrificing

accuracy [5]. XMODEL has extended this event-driven simulation approach even to circuit-level models described

as a network of circuit elements, including passive (e.g. resistors), active (e.g. transistors), and distributed elements

(e.g. transmission lines). XMODEL has another signal type called xbit, which expresses digital signals with accurate

timing, not limited to the SystemVerilog simulator's timestep.

 TX-EQ

VCOPFD CP

÷N

Din

tx_ref_clk

RX

CTLE

PLL

LF

PD

PI

Dout

rx_clk rx_ref_clk

tx_clk

TX-PLL

RX-CDR
vdd

T-lines DFE

ADAPT

Figure 2. The overall block diagram of a high-speed wireline transceiver model with adaptive DFE.

Fig. 3 shows the detailed model of the 4-tap adaptive DFE and its sign-sign LMS adaptation loop in schematic

form. All the block symbols, except for the green one labeled eq_adapt, are XMODEL primitives, such as add,

compare, dac, filter_disc_var, and inv_xbit. For example, the compare primitive describes a clocked comparator,

and filter_disc_var primitive describes a discrete-time filter with variable numerator and denominator coefficients

in its z-domain transfer function. The other primitives perform the functions suggested by their names.

The model of this adaptive DFE receiver closely resembles that in Fig. 1, with a difference that it explicitly

shows the crossings between the analog and digital domains. For the data sampler with DFE, the compare primitive

converts the sampled analog signal dfe_out to a digital output data and the dac primitive on the feedback path

converts data back to an analog signal fb_in, so that it can be subtracted from the incoming signal after being filtered

by the filter_disc_var primitive. On the other hand, the error detector consists of two compare primitives that

measure the polarity of the error between the equalized signal dfe_out and the desired levels dlev1 and dlev0. The

sign-sign LMS adaptation is performed by a digital controller named eq_adapt based on the received data and error

polarity values. The controller produces the desired level and four DFE tap coefficients in 6-bit digital values, which

are then converted to analog values via a set of dac primitives.

4

Error

Detector

Data Sampler

with DFE

Edge Sampler

Sign-Sign LMS

Adaptation

Controller

D/A Converters for DFE Tap Coefficients

Figure 3. The model of the 4-tap adaptive DFE receiver with a sign-sign LMS adaptation loop.

Fig. 4 lists the Verilog code describing the sign-sign LMS adaptation controller (eq_adapt). It basically

computes Eq. (1) to update the DFE tap coefficient values based on the product of the error polarity and the data.

The time shift between the error e[n] and data applied before computing the product depends on the tap position.

For example, w1 is updated based on the product of sign(e[n]) and Dout[n-1] and w4 is updated based on the product

of sign(e[n]) and Dout[n-4]. On the other hand, the desired level dlev is increased when the error polarity indicates

that the equalized signal has the larger swing than dlev and vice versa. To avoid excessive dithering at the locked

states, one update decision is made after accumulating 255 observations.

The code listed in Fig. 4 also contains additional components that facilitate verification by the UVM testbench

to be presented shortly. First, it includes a task named init(), which initializes the DFE tap coefficient values and

resets the internal accumulator states. Second, it triggers a SystemVerilog event named updated when the controller

makes changes to the DFE tap coefficient values. Using these, the UVM testbench sets a new initial state and

monitors the progression of the state over time.

5

Figure 4. The Verilog model of the sign-sign LMS adaptation controller for a 4-tap DFE receiver.

module eq_adapt (

 output reg [5:0] dlev_tap, dfe_tap1, dfe_tap2, dfe_tap3, dfe_tap4,

 input data, data_err1, data_err0,

 input clk

);

reg signed [8:0] acc [0:4];

reg [7:0] count;

reg [1:4] d_buf;

reg data_err;

event updated;

int k;

always @(posedge clk) begin

 d_buf[1:4] <= {data, d_buf[1:3]};

end

always @(posedge clk) begin

 // sign-sign LMS operation

 data_err = (data) ? data_err1 : data_err0;

 acc[0] += ((data) ? data_err1 : ~data_err0) ? +1 : -1;

 acc[1] += (data_err ^ d_buf[1]) ? -1 : +1;

 acc[2] += (data_err ^ d_buf[2]) ? -1 : +1;

 acc[3] += (data_err ^ d_buf[3]) ? -1 : +1;

 acc[4] += (data_err ^ d_buf[4]) ? -1 : +1;

 count += 1;

 if (count == 255) begin

 // update DFE tap coefficients

 if (acc[0] > 8) dlev_tap <= (dlev_tap < 6'd63) ? dlev_tap + 1 : 6'd63;

 else if (acc[0] < -8) dlev_tap <= (dlev_tap > 6'd0) ? dlev_tap - 1 : 6'd0;

 if (acc[1] > 8) dfe_tap1 <= (dfe_tap1 < 6'd63) ? dfe_tap1 + 1 : 6'd63;

 else if (acc[1] < -8) dfe_tap1 <= (dfe_tap1 > 6'd0) ? dfe_tap1 - 1 : 6'd0;

 if (acc[2] > 8) dfe_tap2 <= (dfe_tap2 < 6'd63) ? dfe_tap2 + 1 : 6'd63;

 else if (acc[2] < -8) dfe_tap2 <= (dfe_tap2 > 6'd0) ? dfe_tap2 - 1 : 6'd0;

 if (acc[3] > 8) dfe_tap3 <= (dfe_tap3 < 6'd63) ? dfe_tap3 + 1 : 6'd63;

 else if (acc[3] < -8) dfe_tap3 <= (dfe_tap3 > 6'd0) ? dfe_tap3 - 1 : 6'd0;

 if (acc[4] > 8) dfe_tap4 <= (dfe_tap4 < 6'd63) ? dfe_tap4 + 1 : 6'd63;

 else if (acc[4] < -8) dfe_tap4 <= (dfe_tap4 > 6'd0) ? dfe_tap4 - 1 : 6'd0;

 for (k=0; k<=4; k++) acc[k] = 0;

 count = 0;

 // flag that the DFE tap coefficients are updated

 -> updated;

 end

end

// task that sets the initial values of the DFE tap coefficients

task init(

 input [5:0] init_dlev, init_dfe1, init_dfe2, init_dfe3, init_dfe4

);

 dlev_tap = init_dlev;

 dfe_tap1 = init_dfe1; dfe_tap2 = init_dfe2;

 dfe_tap3 = init_dfe3; dfe_tap4 = init_dfe4;

 d_buf = 0;

 for (k=0; k<=4; k++) acc[k] = 0;

 count = 0;

endtask

endmodule

6

IV. UVM TESTBENCH VERIFYING THE GLOBAL CONVERGENCE OF DFE ADAPTATION

The objective is to verify that the DFE tap coefficients consistently converge to the same values through the

sign-sign LMS adaptation loop regardless of their initial values. To achieve this, the testbench needs to launch a

series of trial runs, each starting from a different initial state—that is, a different set of DFE tap coefficient values—

and check if they all converge to the same final state, i.e., the same set of tap coefficient values. During each trial

run, if the adaptation loop traverses through intermediate states before reaching the final state, each of those

intermediate states can be considered as a valid initial state leading to the same final state. Furthermore, some trial

runs can be stopped early when they reach a state whose final state has already been verified. The verification

concludes when all possible initial states have been visited or when a problematic initial state leading to a different

final state is identified.

Fig. 5 illustrates the organization of the proposed UVM testbench to verify the global convergence property of

the adaptive DFE. Following the approach described in [6],[7], all the analog-specific details are encapsulated

within a fixture module, allowing the rest of the testbench to be built using standard UVM components. In this

particular case, the stimuli and responses of the device-under-test (DUT) enclosed by the fixture module are all

digital. Specifically, the sequencer and driver components provide the fixture module with the next initial tap

coefficient values to try, and the monitor component observes the tap coefficient values traversed by the adaptation

loop and checks if they have converged to their final values.

While one method for the sequencer component to choose a next initial state that has not been tried or traversed

is to use a reactive stimulus technique [3],[8], it was not straightforward to implement it in this particular case

because a single stimulus can generate multiple responses. Instead, a common database containing the state

coverage information is shared among the sequencer, monitor, and scoreboard components via the UVM

configuration database (uvm_config_db). In this approach, the monitor component updates this coverage database

with the observed state values, and the sequencer component selects the next initial state by querying it. Furthermore,

when the monitor component determines that a trial run has reached a new final state or one of the previously

verified states with a known final state, it triggers a UVM event named LOCKED, which is stored in the global

uvm_event_pool. This event allows the sequencer component to initiate a new trial run.

The following subsections provide detailed descriptions of each component within this UVM testbench.

Driver

Sequencer

Scoreboard

Fixture

Environment

UVM Test

Adaptive

DFE

Coverage

Measurement

DFE Coefficient

Initialization

DIFVDIF

Driver Agent

Monitor
MIF VDIF

Monitor Agent

Coverage Database

Access via

uvm_config_db

uvm_event

LOCKED

uvm_eventLOCKED

Figure 5. Conceptual diagram of the UVM testbench performing the global convergence checks on the

adaptive decision-feedback equalizer (DFE) of a high-speed wireline receiver.

7

A. Coverage Database

Fig. 6 presents the code defining a class named COVERAGE, maintaining a list of previously traversed states

and their corresponding final states using two member variables: visited and locks. First, visited is a SystemVerilog

associative array mapping each 24-bit state value, comprising four 6-bit tap coefficient values, to an integer-valued

index of its final state, with valid values starting from 1. States not stored in visited have default mapped values

of 0 and are considered not visited yet. On the other hand, locks is a SystemVerilog queue keeping the list of final

states discovered so far. Therefore, the goal of this UVM testbench is to populate visited with all possible initial

states and verify that only one final state is registered in locks. The COVERAGE class also includes additional

member variables such as num_trials, which tracks the number of trial runs executed so far, and size_full, defining

the size of the array visited when it is full.

The COVERAGE class also defines a set of member functions, such as new(), check_constraint(), and

calc_coeff(), to handle cases where the initial state space needs to be constrained. During the construction of a

new instance, the visited array is populated with the states for which the check_constraint() function returns 0,

with these states mapped to a value of -1. The calc_coeff() function helps define the state-excluding conditions

within the check_constraint() function by converting the digital tap coefficient value to analog. For example, the

check_constraint() function listed in Fig. 6 constrains the initial state space to the tap coefficient values satisfying

|w1|+|w2|+|w3|+|w4|  0.05, |w1| > |w2| > |w3|, and |w2| > |w4|, which occupies only 0.014% of the total state space.

An instance of the COVERAGE class named CVG is created within the top-level module UVM_TB and shared

globally with the UVM components, using the uvm_config_db::set() and uvm_config_db::get() methods. The

UVM_TB module calls uvm_config_db::set() to register the handle to the CVG instance in the UVM configuration

database, and each UVM component calls the uvm_config_db::get() to retrieve it and access the CVG instance's

contents.

Figure 6. The coverage database class for maintaining a list of traversed states and their corresponding

final states.

`define SIZE_STATE 24

typedef bit [`SIZE_STATE-1:0] DATA_t;

typedef virtual IF_t VIF_t;

class COVERAGE;

 shortint visited[DATA_t];

 DATA_t locks[$];

 int num_trials = 0;

 int size_full = (1 << `SIZE_STATE);

 function new();

 DATA_t v = 0;

 for (int i=0; i<size_full; i++) begin

 if (!check_constraint(v)) visited[v] = -1;

 v++;

 end

 endfunction: new

 function int check_constraint(DATA_t value);

 real c1 = calc_coeff(value[23:18]);

 real c2 = calc_coeff(value[17:12]);

 real c3 = calc_coeff(value[11:6]);

 real c4 = calc_coeff(value[5:0]);

 return (`fabs(c1) + `fabs(c2) + `fabs(c3) + `fabs(c4) <= 0.05 &&

 `fabs(c1) > `fabs(c2) && `fabs(c2) > `fabs(c3) && `fabs(c2) > `fabs(c4));

 endfunction: check_constraint

 function real calc_coeff(bit [5:0] v);

 real scale = 0.1;

 return scale * (v*2.0/63 - 1.0);

 endfunction: calc_coeff

endclass: COVERAGE

8

B. Sequencer and Driver Components

Fig. 7 lists the code of the sequencer and driver components that launches a sequence of trial runs. The sequencer

randomly selects the next initial tap coefficient values that have not been tried or traversed by finding the state value

not registered in the coverage database (CVG) using the constrained randomization solver of SystemVerilog. The

driver then feeds this value to the fixture module via the driver-side interface bus (VDIF) and initiates a new trial

run by triggering its member event named TRIG. Each trial run concludes when the monitor component finds that

a termination condition is met and triggers the global UVM event named LOCKED. The sequencer keeps launching

new trial runs until the CVG.visited array is full or the CVG.locks queue has more than one entry.

9

Figure 7. The sequencer and driver components launching a sequence of trial runs with randomly

selected initial tap coefficient values.

class PACKET extends uvm_sequence_item;

 `uvm_object_utils(PACKET)

 rand DATA_t DATA;

 COVERAGE CVG;

 constraint EXCLUDE_con { !CVG.visited.exists(DATA); }

 ...

endclass: PACKET

class SEQ_EQADAPT extends uvm_sequence #(PACKET);

 `uvm_object_utils(SEQ_EQADAPT)

 COVERAGE CVG;

 PACKET PKT;

 DATA_t init_state;

 task body();

 void'(uvm_config_db #(COVERAGE)::get(null, "uvm_test_top", "Key_CVG", CVG));

 PKT = PACKET::type_id::create("PKT");

 PKT.CVG = CVG;

 while (CVG.visited.size() < CVG.size_full && CVG.locks.size() <= 1) begin: LOOP

 start_item(PKT);

 if (CVG.num_trials == 0) PKT.DATA = init_state;

 else void'(PKT.randomize());

 CVG.num_trials++;

 finish_item(PKT);

 end: LOOP

 endtask: body

 ...

endclass: SEQ_EQADAPT

class DRIVER extends uvm_driver #(PACKET);

 `uvm_component_utils(DRIVER)

 VIF_t VDIF;

 uvm_event LOCKED;

 PACKET PKT;

 ...

 function void build_phase(uvm_phase phase);

 void'(uvm_config_db #(VIF_t)::get(null, "uvm_test_top", "Key_VDIF", VDIF));

 endfunction: build_phase

 task run_phase(uvm_phase phase);

 LOCKED = uvm_event_pool::get_global("LOCKED");

 wait(!VDIF.RST);

 forever begin: LOOP

 // apply a new initial state

 seq_item_port.get_next_item(PKT);

 VDIF.DATA = PKT.DATA;

 -> VDIF.TRIG;

 `uvm_info("DRV", $sformatf("\n | DRV #%0d: trying new initial state: %b", PKT.CVG.num_trials,

VDIF.DATA), UVM_HIGH);

 // wait until a lock is reached

 LOCKED.wait_trigger();

 #(1ns);

 seq_item_port.item_done();

 end: LOOP

 endtask: run_phase

endclass: DRIVER

10

C. Fixture Module

The fixture module, shown in Fig. 8, instantiates the model of the high-speed wireline transceiver described in

Section III, including the 4-tap DFE and its sign-sign LMS adaptation controller. It also includes the necessary

instrumentations to apply new initial tap coefficient values to the adaptation controller and observe the tap

coefficient values being traversed by the adaptation controller afterwards.

Specifically, when the TRIG event of the driver-side interface bus (DIF) is triggered, the fixture module calls

the init() task of the eq_adapt module instance to set its tap coefficients to the values provided by the sequencer

component (DIF.DATA). Additionally, when the updated event of the eq_adapt module instance is triggered,

indicating a change in the tap coefficient values, the fixture module forwards the values to the monitor component

via the monitor-side interface bus (MIF) and triggers its TRIG event.

Figure 8. The fixture module instantiating the high-speed wireline transceiver model and facilitating the

trial runs by setting new initial tap coefficient values and observing their traversal afterwards.

`define DUT_EQADAPT DUT.IRXCDR.IRXEQ.IEQADAPT

interface IF_t (input bit RST);

 DATA_t DATA;

 event TRIG;

endinterface: IF_t

module FIXTURE (IF_t DIF, IF_t MIF);

 parameter real data_freq = 16.0e9; // data rate

 parameter real ref_freq = 2.0e9; // RX reference clock frequency

 parameter real ref_RJ = 1e-12; // RX reference clock jitter

 xbit ref_txclk, ref_rxclk, tx_clk, rx_clk;

 xbit Din, Dout, Dout_os;

 xreal delay_txclk, vdd;

 bit [5:0] init_dfe1, init_dfe2, init_dfe3, init_dfe4;

 // DUT instantiation

 hslink #(.channel_noise(0.001), .rx_noise(0.001))

 DUT (.ref_txclk, .ref_rxclk, .tx_clk, .rx_clk, .Din, .Dout, .Dout_os, .delay_txclk, .vdd);

 // clock, data, and supply sources

 clk_gen #(.freq(ref_freq), .RJ_rms(ref_RJ)) U1 (ref_txclk);

 clk_gen #(.freq(ref_freq), .RJ_rms(ref_RJ)) U2 (ref_rxclk);

 prbs_gen #(.length(15)) U3 (.trig(tx_clk), .out(Din));

 dc_gen #(.value(0.0)) U4 (delay_txclk);

 dc_gen #(.value(1.2)) U5 (vdd);

 // interfaces with driver & monitor

 always @(DIF.TRIG) begin

 // initialize DFE coefficients

 {init_dfe1, init_dfe2, init_dfe3, init_dfe4} = DIF.DATA;

 `DUT_EQADAPT.init(

 .init_dlev(6'b010110), // NOTE: fixing dlev at 6'b010110

 .init_dfe1(init_dfe1), .init_dfe2(init_dfe2), .init_dfe3(init_dfe3), .init_dfe4(init_dfe4)

);

 end

 always @(`DUT_EQADAPT.updated) begin

 MIF.DATA = {`DUT_EQADAPT.dfe_tap1, `DUT_EQADAPT.dfe_tap2, `DUT_EQADAPT.dfe_tap3, `DUT_EQADAPT.dfe_tap4};

 -> MIF.TRIG;

 end

endmodule: FIXTURE

11

D. Monitor Component

The monitor component in Fig. 9 plays an important role in this UVM testbench by collecting a trace of the tap

coefficient values traversed by the adaptation controller and updating the coverage database when one of the

termination conditions is met. Specifically, the monitor continues collecting the trace until either a new final locked

state is reached or a previously-visited state is revisited. Depending on which termination condition occurs, the

monitor records the states included in the trace in the coverage database with a new final state or an existing final

state, respectively. Note that the determination of whether the adaptation controller has reached a final locked state

is based on checking if the controller revisits a state that was recorded in the trace of the current trial run 8 or more

update cycles earlier.

Figure 9. The monitor component observing the tap coefficient values traversed by the adaptation

controller and updating the coverage database depending on whether a new final locked state is reached

or a previously-visited state is revisited.

class MONITOR extends uvm_monitor;

 `uvm_component_utils(MONITOR)

 VIF_t VMIF;

 COVERAGE CVG;

 uvm_event LOCKED;

 ...

 function void build_phase(uvm_phase phase);

 void'(uvm_config_db #(VIF_t)::get(null, "uvm_test_top", "Key_VMIF", VMIF));

 void'(uvm_config_db #(COVERAGE)::get(null, "uvm_test_top", "Key_CVG", CVG));

 endfunction: build_phase

 task run_phase(uvm_phase phase);

 DATA_t queue[$];

 shortint index_lock;

 int result[$];

 LOCKED = uvm_event_pool::get_global("LOCKED");

 wait(!VMIF.RST);

 forever begin:LOOP

 @(VMIF.TRIG);

 // collect a trace of states until a lock is reached

 if (CVG.visited.exists(VMIF.DATA) && CVG.visited[VMIF.DATA] > 0)

 index_lock = CVG.visited[VMIF.DATA];

 else begin

 result = queue.find_first_index with (item == VMIF.DATA);

 if (result.size() != 0 && result[0] < queue.size() - 8)

 index_lock = -1;

 else begin

 queue.push_back(VMIF.DATA);

 index_lock = 0;

 end

 end

 // put the trace into the coverage database

 if (index_lock != 0) begin

 if (index_lock < 0) begin

 CVG.locks.push_back(queue[$]);

 index_lock = CVG.locks.size();

 end

 `uvm_info("MON", $sformatf("\n | MON #%0d: reaching %b (final state #%0d: %b)", CVG.num_trials,

queue[$], index_lock, CVG.locks[index_lock-1]), UVM_HIGH);

 foreach (queue[i]) CVG.visited[queue[i]] = index_lock;

 queue.delete();

 // trigger LOCKED to initiate a new search

 LOCKED.trigger();

 end

 end: LOOP

 endtask: run_phase

endclass: MONITOR

12

E. Scoreboard Component

The scoreboard component in this UVM testbench simply reports the pass/fail result after the sequence of trial

runs is completed. As the code listed in Fig. 10 shows, it determines whether the global convergence property of

the sign-sign LMS adaptation controller is verified as true or false, based on the number of final locked states

registered in the locks queue of the coverage database (CVG.locks). If CVG.locks has only one entry, it implies that

the adaptation consistently converges to the same final state for all possible initial states. Otherwise, if CVG.locks

has multiple entries, it suggests that there are some initial states that lead to different final states than others, which

requires further examination.

Figure 10. The scoreboard component reporting the pass/fail result of the simulation.

V. EXPERIMENTAL RESULTS

This section discusses the simulation results obtained using the presented UVM testbench to check the global

convergence property of the sign-sign LMS adaptation controller for the 4-tap DFE of the 16-Gb/s high-speed

wireline transceiver model described in Section III. The simulations are run with Cadence Xcelium and Scientific

Analog's XMODEL, and the reported runtimes are measured on a 64-bit Linux machine with 2.3-GHz 4-core Intel

Core i7 processor and 8-GB of memory. The following subsections present the results with multiple scenarios: the

case with high channel loss, the case with unconstrained tap coefficients, and the case with constrained tap

coefficients. Based on the discussions in Section II, the sign-sign LMS adaptation loop is expected to encounter

difficulties with global convergence when the tap coefficient values become large, either due to high channel loss

or unconstrained initialization.

A. Case with High Channel Loss

First, the simulation is run with a channel having very high loss, such as a -45dB loss at the Nyquist rate of

8GHz. Fig. 11 shows the simulation log generated by the UVM testbench. After running 7 trials with randomized

initial tap coefficient values, the testbench identified two final locked states that the DFE adaptation loop could

converge to. Since the simulation was aborted as soon as the second locked state was found, the total runtime was

only 85 seconds.

class SCOREBOARD extends uvm_scoreboard;

 `uvm_component_utils(SCOREBOARD)

 COVERAGE CVG;

 uvm_event LOCKED;

 ...

 function void build_phase(uvm_phase phase);

 void'(uvm_config_db #(COVERAGE)::get(null, "uvm_test_top", "Key_CVG", CVG));

 endfunction: build_phase

 function void report_phase(uvm_phase phase);

 if (CVG.locks.size() == 1) begin

 `uvm_info("SCB", "\n | SCB: [PASS] all tested initial states lead to the same locked state.", UVM_HIGH);

 end

 else begin

 if (CVG.locks.size() >= 2) begin

 `uvm_info("SCB", $sformatf("\n | SCB: [FAIL] more than one locked states are found:\n #1: %b\n

#2: %b\n", CVG.locks[0], CVG.locks[1]), UVM_HIGH);

 end

 else begin

 `uvm_info("SCB", "\n | SCB: [FAIL] no locked state is found.", UVM_HIGH);

 end

 end

 `uvm_info("SCB", $sformatf("\n | SCB: number of trials = %0d, final coverage = %g (%0d/%0d)",

CVG.num_trials, real'(CVG.visited.size())/CVG.size_full, CVG.visited.size(), CVG.size_full), UVM_HIGH);

 endfunction: report_phase

endclass: SCOREBOARD

13

Figure 11. The UVM simulation log reporting a global convergence failure when the channel has a high

loss of -45-dB at 8GHz.

DFE Tap 1

DFE Tap 2

DFE Tap 3

DFE Tap 4

(a)

(b) (c)

Figure 12. (a) The trajectories of the DFE tap coefficient values during the simulation with a -45dB

channel loss; (b) the equalized eye diagram at the first locked state, and (c) the equalized eye diagram at

the second locked state.

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 500.000ns: uvm_test_top.E.AGNTD.DRV [DRV]

 | DRV #1: trying new initial state: 100000100000100000100000

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 1137.467ns: uvm_test_top.E.AGNTM.MON [MON]

 | MON #1: reaching 100111100100100001100000 (final state #1: 100111100100100001100000)

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 1138.467ns: uvm_test_top.E.AGNTD.DRV [DRV]

 | DRV #2: trying new initial state: 011001011010100001011110

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 1823.684ns: uvm_test_top.E.AGNTM.MON [MON]

 | MON #2: reaching 101001100110100010100000 (final state #1: 100111100100100001100000)

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 1824.684ns: uvm_test_top.E.AGNTD.DRV [DRV]

 | DRV #3: trying new initial state: 100111100101100000011110

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 2159.451ns: uvm_test_top.E.AGNTM.MON [MON]

 | MON #3: reaching 101010100111100010100000 (final state #1: 100111100100100001100000)

 ...

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 3071.904ns: uvm_test_top.E.AGNTD.DRV [DRV]

 | DRV #7: trying new initial state: 011010011100100010011110

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 3422.325ns: uvm_test_top.E.AGNTM.MON [MON]

 | MON #7: reaching 010111011010100000011100 (final state #2: 010111011010100000011100)

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/SCB_PKG.sv(45) @ 3423.325ns: uvm_test_top.E.SCB [SCB]

 | SCB: [FAIL] more than one locked states are found:

 #1: 100111100100100001100000

 #2: 010111011010100000011100

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/SCB_PKG.sv(51) @ 3423.325ns: uvm_test_top.E.SCB [SCB]

 | SCB: number of trials = 7, final coverage = 0.999862 (16774909/16777216)

14

Fig. 12(a) plots the trajectories of the DFE tap coefficient values traversed during the entire simulation. The

time points where the tap coefficient values have abrupt changes indicate when the testbench initiates a new trial

run with a newly generated set of tap coefficient values. Fig. 12(b) and 12(c) show the equalized eye diagrams

using the two sets of tap coefficients identified by the simulation. The first set seems adequate, although the eye

opening is still small due to the high uncompensated loss of the channel. The second set clearly represents a false

locked state, yielding no eye opening at all. In this second set, the tap coefficients have relatively large values:

w1=010111 (-27mV), w2=011010 (-17mV), w3=100000 (1.6mV), and w4=011100 (-11mV). These values cause the

DFE receiver to produce an alternating data pattern of 10101010 regardless of the actual input to the receiver.

B. Case with Unconstrained Tap Coefficients

Next, the simulation is run with a channel exhibiting a moderate loss of -20-dB at 8GHz and no constraints on

the tap coefficient values, other than the minimum and maximum bounds of -0.1 and +0.1V, respectively. Fig. 13

shows the simulation log generated by the UVM testbench for this case. After running just 6 trials in 25 seconds,

the testbench identified two final locked states that the DFE adaptation loop could converge to.

Fig. 14(a) plots the trajectories of the DFE tap coefficient values traversed during the entire simulation. And

Fig. 14(b) and 14(c) show the equalized eye diagrams using the two sets of tap coefficients identified by the

simulation. The first set is clearly the desired one, yielding a wide eye opening of 58mVpp,diff. In contrast, the second

set produces a very strange-looking eye diagram. Similar to the case with the high-loss channel, the DFE tap

coefficients have large values that can force the decision solely based on the previous outputs, regardless of the

current input. The DFE receiver in this case also produces an alternating data pattern of 10101010.

Figure 13. The UVM simulation log reporting a global convergence failure when the initial tap coefficient

space is not constrained.

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 500.000ns: uvm_test_top.E.AGNTD.DRV [DRV]

 | DRV #1: trying new initial state: 100000100000100000100000

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 818.731ns: uvm_test_top.E.AGNTM.MON [MON]

 | MON #1: reaching 100110011111100010011111 (final state #1: 100110011111100010011111)

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 819.731ns: uvm_test_top.E.AGNTD.DRV [DRV]

 | DRV #2: trying new initial state: 011010010010111110011101

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 1361.606ns: uvm_test_top.E.AGNTM.MON [MON]

 | MON #2: reaching 100110100000100011100000 (final state #1: 100110011111100010011111)

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 1362.606ns: uvm_test_top.E.AGNTD.DRV [DRV]

 | DRV #3: trying new initial state: 000011010001011111111000

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 1952.230ns: uvm_test_top.E.AGNTM.MON [MON]

 | MON #3: reaching 100001100001100001100001 (final state #1: 100110011111100010011111)

 ...

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 3580.856ns: uvm_test_top.E.AGNTD.DRV [DRV]

 | DRV #6: trying new initial state: 111001001000101011001011

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 3883.683ns: uvm_test_top.E.AGNTM.MON [MON]

| MON #6: reaching 101111010010100001010101 (final state #2: 101111010010100001010101)

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/SCB_PKG.sv(45) @ 3884.683ns: uvm_test_top.E.SCB [SCB]

 | SCB: [FAIL] more than one locked states are found:

 #1: 100110011111100010011111

 #2: 101111010010100001010101

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/SCB_PKG.sv(51) @ 3884.683ns: uvm_test_top.E.SCB [SCB]

 | SCB: number of trials = 6, final coverage = 1.15037e-05 (193/16777216)

15

DFE Tap 1

DFE Tap 2

DFE Tap 3

DFE Tap 4

(a)

(b) (c)

Figure 14. (a) The trajectories of the DFE tap coefficient values during the simulation when the state

space is unconstrained; (b) the equalized eye diagram at the first locked state, and (c) the equalized eye

diagram at the second locked state.

C. Case with Constrained Tap Coefficients

Finally, the simulation is run with the moderate-loss channel and the constraints discussed in Section IV-A,

namely, |w1|+|w2|+|w3|+|w4|  0.05, |w1| > |w2| > |w3|, and |w2| > |w4|. These constraints exclude the problematic initial

states identified in the previous subsection and make the simulation feasible by reducing the state space.

The simulation log shown in Fig. 15 reports a successful global convergence after running 1,721 trials for 5

hours and 12 minutes. The simulation verified a total of 2,347 states, achieving an effective 26.7% reduction in the

number of trial runs required. Further improvement may be possible by adding more guidance to the random

selection of the next initial state, so that each trial run can traverse as many intermediate states as possible.

16

Figure 15. The UVM simulation log reporting a successful global convergence success when the initial tap

coefficient space is constrained with |w1|+|w2|+|w3|+|w4|  0.05, |w1| > |w2| > |w3|, and |w2| > |w4|.

VI. CONCLUSION

This work demonstrated that the power of UVM can be harnessed to verify the global convergence property of

analog/mixed-signal systems. Specifically, it presented a UVM testbench capable of checking whether a sign-sign

LMS adaptation controller for a high-speed wireline DFE receiver can reach the desired equalized state regardless

of its initial state conditions. To achieve this, the proposed testbench launches a sequence of trial runs with different

initial states with an objective of exploring all possible states in the system. Thus, the proposed testbench generates

a reactive stimulus, but its stimulus-response pattern does not conform to the standard UVM framework described

in [8]. Instead, the testbench utilizes a state coverage database shared via the UVM configuration database and a

UVM event maintained by the global event pool. Further directions may include improving the efficiency of state

exploration and verifying the global convergence property of other analog/mixed-signal systems as well.

VII. ACKNOWLEDGMENT

The EDA tools used in this work were supported by the IC Design Education Center (IDEC), Korea and

Scientific Analog, Inc, Palo Alto, U.S.A.

VIII. REFERENCES

[1] R. W. Lucky, "Techniques for Adaptive Equalization of Digital Communication Systems," The Bell Systems Technical

Journal, Feb. 1966.

[2] V. Stojanovic, et al., “Autonomous Dual-Mode (PAM2/PAM4) Serial Link Transceiver with Adaptive Equalization and

Data Recovery,” IEEE J. Solid-State Circuits, April 2005.

[3] J. Kim, "A UVM Reactive Testbench for Jitter Tolerance Measurement of High-Speed Wireline Receivers," Design and

Verification Conference and Exhibition (DVCON) U.S., Mar. 2023.

[4] Scientific Analog, Inc. XMODEL. [Online]. Available at: https://www.scianalog.com/xmodel.

[5] J. E. Jang, et al., “True Event-Driven Simulation of Analog/Mixed-Signal Behaviors in SystemVerilog: A Decision-

Feedback Equalizing (DFE) Receiver Example,” IEEE Custom Integrated Circuits Conf. (CICC), Sept. 2012.

[6] C. Dancak, "A UVM SystemVerilog Testbench for Analog/Mixed-Signal Verification: A Digitally-Programmable

Analog Filter Example," Design and Verification Conference and Exhibition (DVCON) U.S., Mar. 2021.

[7] C. Dancak, "A UVM SystemVerilog Testbench for Directed & Random Testing of an AMS LDO Voltage Regulator,"

Design and Verification Conference and Exhibition (DVCON) U.S., Mar. 2024.

[8] C. E. Cummings, et al., “UVM Reactive Stimulus Techniques,” Design and Verification Conference and Exhibition

(DVCON) U.S., Mar. 2020.

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 500.000ns: uvm_test_top.E.AGNTD.DRV [DRV]

 | DRV #1: trying new initial state: 100000100000100000100000

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 882.482ns: uvm_test_top.E.AGNTM.MON [MON]

 | MON #1: reaching 100100100000100001100001 (final state #1: 100100100000100001100001)

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 883.482ns: uvm_test_top.E.AGNTD.DRV [DRV]

 | DRV #2: trying new initial state: 011001011010100001011110

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 1074.667ns: uvm_test_top.E.AGNTM.MON [MON]

 | MON #2: reaching 100011100001100010100000 (final state #1: 100100100000100001100001)

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 1075.667ns: uvm_test_top.E.AGNTD.DRV [DRV]

 | DRV #3: trying new initial state: 100111100100011111100000

UVM_INFO /PATH/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 1155.357ns: uvm_test_top.E.AGNTM.MON [MON]

 | MON #3: reaching 100110100001100001100001 (final state #1: 100100100000100001100001)

 ...
UVM_INFO /users/jaeha/projects/UVM_eqadapt/uvm_tb/DRV_PKG.sv(40) @ 83992.481ns: uvm_test_top.E.AGNTD.DRV [DRV]

 | DRV #1721: trying new initial state: 100101011011011110011100

UVM_INFO /users/jaeha/projects/UVM_eqadapt/uvm_tb/MON_PKG.sv(62) @ 84024.354ns: uvm_test_top.E.AGNTM.MON [MON]

 | MON #1721: reaching 100101011011011110011100 (final state #1: 100100100000100001100001)

UVM_INFO /users/jaeha/projects/UVM_eqadapt/uvm_tb/SCB_PKG.sv(41) @ 84025.354ns: uvm_test_top.E.SCB [SCB]

 | SCB: [PASS] all tested initial states lead to the same locked state.

UVM_INFO /users/jaeha/projects/UVM_eqadapt/uvm_tb/SCB_PKG.sv(51) @ 84025.354ns: uvm_test_top.E.SCB [SCB]

 | SCB: number of trials = 1721, final coverage = 1.0 (16777216/16777216)

