

SAN JOSE, CA, USA FEBRUARY 24-27, 2025

Catching the Elusive Voltage Spike with Analog/Mixed-Signal SVA/PSL Assertions

Charles Dančak, Betasoft Consulting, Santa Clara

On-Chip Bias Line Subject to Spikes

Long Wires
Prone to
Crosstalk

- Spikes affecting a bias voltage can arise from excess crosstalk or noise bursts.
- Even with careful routing and shielding, such glitches can lead to malfunction.

Simplified Model of Bias Line

- Bias line VBN drives the nMOS bias pin on a typical two-stage CMOS op-amp.
- Transmission gate was open during PWR_DN, but is re-enabled in RESUME.
- Bias level VBN will then rise exponentially to its valid range: 700 mV ± 50.

4

```
Evaluate at Clock Ticks

CLK

Bias Ought vBN

To be Stable

//Check whether bias value VBN stays in range:

VBN VBN VALUE_chk:

Assertion

Assert property((VBN >= 0.650) && (VBN <= 0.750));
```

- These spikes on VBN are so narrow they fall in between assertion clock edges.
- A concurrent assertion is evaluated only at clock ticks [SVA Handbook, §2.3].
- Assertion VBN_VALUE_chk thus passes blindly—missing the spikes entirely.

Throwing More Points at the Problem

- By increasing the assertion clock rate, we evaluate bias **VBN** more frequently.
- First spike is successfully detected, and assertion VBN_VALUE_chk will fail.
- But there is no guarantee of catching a second spike that is yet more narrow.

6

A Real-Number Waveform

$$V(t) = \{ (t_1, V_1), (t_2, V_2), \dots \}$$

Mathematical Time Sequence of Points

- Modeling analog waveforms using time-value pairs is inherently point-based.
- Finite time interval between two closely-spaced points can still conceal a glitch.
- Unaided assertion like VBN_VALUE_chk may thus blindly pass a narrow spike.

XMODEL Waveform
(Type xreal)

$$V(t) = \sum_{i} c_{i} t^{m_{i}} e^{-a_{i}t}$$
Simplified struct

- Consistent spike detection demands a departure from a point-based paradigm.
- But how do we monitor **VBN** continuously in time—not just at discrete points?
- Paradigm 2: Represent VBN as an analytic function, everywhere differentiable.

One Event per Analytic Expression

xrealWaveform
Rendering

Simulation Event Markers

- The XWAVE viewer shows xreal VBN signal, with event markers enabled.
- With far fewer events, Xcelium will run at normal logic-simulation speeds.

- Analytic functions are differentiable, allowing many waveform measurements.
- Library element meas_max finds input signal's peak over some time window.
- From the analytic time-domain expression, it can compute the first derivative.
- Extracts, from list of falling zero-crossings, the highest peak inside the window.

Make Continuous-Time Measurements

10

Assert that VBN Stay in Range

```
√LDO/150

                                                                                  //Time window to check VBN VALID:
                      sequence WINDOW seq;
     SVA
                        $rose(VBN VALID) ##1 VBN VALID[+] ##1 $fell(STATE == RESUME);
 Sequence
                      endsequence: WINDOW seq
                    //VBN shall remain valid during window:
                                                                                                True
                      property VBN STABLE pro;
Concurrent
                      //Activate when bias enters its range:
                                                                                            Measured
                       (STATE == RESUME) && $rose(VBN VALID) |-> //Antecedent clause.
 Property
                          (VBN VALID throughout WINDOW seq);
                                                                //Consequent clause.
                                                                                             Extrema
                      endproperty: VBN STABLE pro
                    //Assert property VBN STABLE pro:
                      VBN STABLE chk:
  XMODEL
                      assert property(VBN STABLE pro)
                                                           //Condition with meas max/min:
                        $info("VBN STABLE passing ...);
                                                             let VBN VALID =
   -Aided
                      else begin
                                                               ((VBN min >= 0.650) && (VBN max <= 0.750));
                        ++FAILURES; //Failure count.
 Assertion
                        $error("VBN STABLE failing ...);
                      end
```


Testbench Instrumentation

912

Injecting Spikes onto VBN

```
while (INJ) begin //Procedural loop.
//Control density of random spikes:
    DELAY = $urandom_range(10000, 5000);
//Delay next edge, in ps units:
    #(DELAY) SPIKE_TRIG <= ~SPIKE_TRIG;
end</pre>
```


- Need some means of injecting spikes, analogous to a lab waveform generator.
- Injection subcircuit built from procedural code and XMODEL library elements.
- Resistors, capacitors chosen to yield narrow spikes, several picoseconds wide.

Conclusions & Questions

- Can we detect noise spikes, picoseconds wide, between clock edges?
- Yes. Assertions aided by XMODEL can catch voltage spikes and glitches.
- Elements like **meas_max** continuously monitor signal maxima over a time interval—without the need to sample values more frequently.
- Testbench caught every spike on bias line VBN, with no speed penalty.

